搜索
    上传资料 赚现金
    英语朗读宝

    精品解析2022年京改版七年级数学下册第五章二元一次方程组专题测评试卷(含答案详解)

    精品解析2022年京改版七年级数学下册第五章二元一次方程组专题测评试卷(含答案详解)第1页
    精品解析2022年京改版七年级数学下册第五章二元一次方程组专题测评试卷(含答案详解)第2页
    精品解析2022年京改版七年级数学下册第五章二元一次方程组专题测评试卷(含答案详解)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后复习题

    展开

    这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后复习题,共20页。试卷主要包含了小明在解关于x,用代入消元法解关于,下列方程中,①x+y=6;②x等内容,欢迎下载使用。
    京改版七年级数学下册第五章二元一次方程组专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、已知是二元一次方程,则的值为(    A. B.1 C. D.22、下列方程组中,不是二元一次方程组的是(    ).A. B. C. D.3、若是方程组的解,则的值为(  A.16 B.-1 C.-16 D.14、小明在解关于xy的二元一次方程组时得到了正确结果.后来发现处被墨水污损了,请你帮他计算出处的值分别是(   ).A.1、1 B.2、1 C.1、2 D.2、25、用代入消元法解关于的方程组时,代入正确的是(    A. B.C. D.6、若方程x+y=3,x﹣2y=6和kx+y=7有公共解,则k的值是(  )A.1 B.﹣1 C.2 D.﹣27、在某场CBA比赛中,某位运动员的技术统计如下表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分(分)篮板(个)防攻(次)个人总得分(分)数据38271163433注:①表中出手投篮次数和投中次数均不包括罚球;②总得分=两分球得分+三分球得分+罚球得分.根据以上信息,本场比赛中该运动员投中两分球和三分球各(  )个.A.5,6 B.6,5 C.4,7 D.7,48、下列方程中,①xy=6;②xxy)=2;③3xyz+1;④m=7是二元一次方程的有(    A.1个 B.2个 C.3个 D.4个9、在一个3×3的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图所示的方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则x+2y的值是(  ) ﹣3y  1 4 x A.15 B.17 C.19 D.2110、已知方程组中,xy的值相等,则m等于(   ).A.1或-1 B.1 C.5 D.-5第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、方程组有正整数解,则正整数a的值为________.2、已知xy满足方程组,则的值为__________.3、已知下列方程,其中是二元一次方程的有________.(1)2x-5=y; (2)x-1=4; (3)xy=3;   (4)x+y=6;   (5)2x-4y=7;(6);(7);(8);(9);(10)4、方程,当a≠___时,它是二元一次方程,当a=____时,它是一元一次方程.5、我国古代《孙子算经》记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是说:“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘,问人和车的数量各是多少?”设共有x辆车,y人,则______,______.三、解答题(5小题,每小题10分,共计50分)1、中药是我国的传统医药,其独特的疗效体现了我们祖先的智慧,并且在抗击新冠疫情中,中医药发挥了重要的作用.现某中药材种植基地欲将一批150吨的重要中药材运往某药品生产厂,现有甲、乙两种车型供运输选择,每辆车的运载能力(假设每辆车均满载)和运费如下表所示:车型运载量(吨/辆)1012运费(元/辆)700720若全部中药材用甲、乙两种车型一次性运完,需支付运费9900元,问甲、乙两种车型各需多少辆?2、疫情期间,某物业公司欲购进AB两种型号的防护服,若购入A种防护服30套,B种防护服50套,需6600元,若购入A种防护服40套,B种防护服10套,需3700元.(1)求购进AB两种防护服的单价分别是多少元?(2)若该公司准备用不多于12300元的金额购进这两种防护服共150套,求A种防护服至少要购进多少套?3、某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若购进了甲种钢笔80支,乙种钢笔60支,求需要多少元?(3)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种购进方案.4、表一x3a9y02b表二x91cy43612(1)关于xy二元一次方程2x﹣3y=6和mxny=40的三组解分别如表一、表二所示,则:a     b     c     (2)关于xy二元一次方程组的解是     5、分别用代入消元法和加减消元法解方程组并说明两种方法的共同点. ---------参考答案-----------一、单选题1、C【分析】根据二元一次方程的定义,即含有两个未知数,且未知数的次数均为1,即可求解.【详解】解:∵是二元一次方程, ,且解得:故选:C【点睛】本题主要考查了二元一次方程的定义,解题的关键是熟练掌握含有两个未知数,且未知数的次数均为1.2、B【分析】依据二元一次方程组的定义求解即可.【详解】利用二元一次方程组的定义一一进行判断,A和D符合二元一次方程组的定义;方程组中,可以整理为所以C也符合;B中含有三个未知数不符合二元一次方程组的定义.故答案选B【点睛】本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.3、C【分析】xy的值代入方程组,求出a+ba-b的值,代入原式计算即可求出值.【详解】解:把代入方程组得两式相加得两式相差得:故选C.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4、B【分析】将方程组的解代入方程求解即可.【详解】代入,得解之得故选:B.【点睛】此题考查解二元一次方程组,掌握解二元一次方程组的方法:代入法和加减法,并根据方程组的特点选择恰当的解法是解题的关键.5、A【分析】利用代入消元法把①代入②,即可求解.【详解】解:把①代入②,得:故选:A【点睛】本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.6、C【分析】先求出的解,然后代入kx+y=7求解即可.【详解】解:联立②-①,得-3y=3,y=-1,y=-1代入①,得x-1=3x=4,代入kx+y=7得:4k﹣1=7,k=2,故选:C.【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,二元方程转化为一元方程是解题的关键.7、B【分析】设本场比赛中该运动员投中两分球x个,三分球y个,根据投中次数结合总分,即可得出关于xy二元一次方程组,解之即可得出结论.【详解】解:设本场比赛中该运动员投中两分球x个,三分球y个,根据题意得:解得:答:设本场比赛中该运动员投中两分球6个,三分球5个.故选:B.【点睛】本题考查统计表和了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.8、A【分析】含有两个未知数,且含未知数的项的最高次数是1,这样的整式方程是二元一次方程,根据定义逐一分析即可.【详解】解:①xy=6是二元一次方程;xxy)=2,即不是二元一次方程;③3xyz+1是三元一次方程;m=7不是二元一次方程;故符合题意的有:①,故选A【点睛】本题考查的是二元一次方程的定义,掌握定义,根据定义判断方程是否是二元一次方程是解本题的关键.9、D【分析】根据题意列出两条等式,求出xy的值即可.【详解】根据题意可得:解得x+2y=5+2×8=5+16=21,故答案为:D.【点睛】本题考查了方程组的实际应用,与代数式求值,掌握列方程组的方法是解题的关键.10、B【分析】根据xy的值相等,利用第二个方程求出x的值,然后代入第一个方程求解即可.【详解】解:解方程组得:xy的值相等,解得故选:B.【点睛】本题考查了解二元一次方程组,根据xy的值相等利用第二个方程求出x的值是解题的关键.二、填空题1、2【解析】【分析】先消去 求解再由为正整数,分类求解 结合为正整数求解 再检验此时的是否满足也为正整数,从而可得答案.【详解】解:得: ①-③得: 时,方程无解,时,方程的解为: 为正整数, 解得: 为正整数, 为正整数,由②得:也为正整数,所以故答案为:2【点睛】本题考查的是二元一次方程的正整数解,掌握“解二元一次方程组的方法及分类讨论”是解本题的关键.2、1【解析】【分析】利用整体思想直接用方程①-②即可得结果.【详解】解:①-②得,4x+4y=4,x+y=1,故答案为:1.【点睛】本题考查了二元一次方程组的解,解二元一次方程组,解决本题的关键是掌握整体思想.3、(1)(4)(5)(8)(10)【解析】【分析】根据二元一次方程的定义逐一进行分析判断即可.【详解】只有(1)(4)(5)(8)(10)满足二元一次方程的概念.(2)为一元一次方程,方程中只含有一个未知数;(3)中含未知数的项的次数为2;(6)只含有一个未知数;(7)不是整式方程;(9)中未知数x的次数为2【点睛】本题考查了二元一次方程的概念.解题的关键是熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的最高次项的次数是1的整式方程.判断一个方程是否为二元一次方程的依据是二元一次方程的定义,对于比较复杂的方程,可以先化简,再根据定义进行判断.4、     ±1     或1【解析】【分析】根据一元一次方程的定义可得分两种情况讨论,当,即时;当,即时,方程为一元一次方程,即可得的值;根据二元一次方程的定义可得,解可得的值.【详解】解:关于的方程,是二元一次方程,解得:方程,是一元一次方程,分类讨论如下:,即时,方程为为一元一次方程;,即时,方程为为一元一次方程;故答案是:±1;或1.【点睛】本题主要考查了二元一次方程和一元一次方程的定义,解题的关键是掌握一元一次方程的定义:只含有一个未知数(元,且未知数的次数是1,这样的方程叫一元一次方程.二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.5、     15     39【解析】【分析】设有x辆车,有y人,根据“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘”列出方程组,解之即可.【详解】解:设有x辆车,有y人,依题意得:解得,故答案为:15,39.【点睛】本题考查了二元一次方程组的应用,找准等量关系是解此题的关键.三、解答题1、甲种车型需9辆,乙种车型需5辆.【分析】设甲种车型需辆,乙种车型需辆,然后根据药材一共有150吨,运费一共9900元,列出方程求解即可.【详解】解:设甲种车型需辆,乙种车型需辆,根据题意得解得∴甲种车型需9辆,乙种车型需5辆答:甲种车型需9辆,乙种车型需5辆.【点睛】本题主要考查了二元一次方程组的应用,解题的关键在于能够准确理解题意,列出方程求解.2、(1)购进AB两种防护服的单价分别是70元、90元;(2)A种防护服至少要购进60套【分析】(1)根据题意可以列出相应的二元一次方程组,然后求解即可;(2)根据题意可以列出相应的不等式,然后求解即可.【详解】解:(1)设购进AB两种防护服的单价分别是a元、b元,由题意可得:解得:答:购进AB两种防护服的单价分别是70元、90元;(2)设购进A种防护服x套,则购进B种防护服(150﹣x)套,由题意可得70x+90(150﹣x)≤12300,即: 解得:x≥60,答:A种防护服至少要购进60套.【点睛】本题考查二元一次方程组的实际应用,以及一元一次不等式的应用,能够列出相关的方程组或不等关系是解题的重点.3、(1)甲种钢笔每支需5元,乙种钢笔每支需10元;(2)1000元;(3)6种【分析】(1)设购进甲种钢笔每支需元,购进乙种钢笔每支需元,根据“若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元”,即可得出关于的二元一次方程组,解之即可得出甲、乙两种钢笔的单价;(2)利用总价单价数量,即可求出购进甲种钢笔80支、乙种钢笔60支所需费用;(3)设购进甲种钢笔支,则购进乙种钢笔支,根据“购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍”,即可得出关于的一元一次不等式组,解之即可得出的取值范围,结合均为正整数,即可得出进货方案的数量.【详解】解:(1)设购进甲种钢笔每支需元,购进乙种钢笔每支需元,依题意得:解得:答:购进甲种钢笔每支需5元,购进乙种钢笔每支需10元.(2)(元答:需要1000元.(3)设购进甲种钢笔支,则购进乙种钢笔支,依题意得:解得:均为正整数,可以为150,152,154,156,158,160,该文具店共有6种购进方案.【点睛】本题考查了二元一次方程组的应用、有理数的混合运算以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,找出关于的一元一次不等式组.4、(1)6;4;7;(2)【分析】(1)将xay=2,x=9,yb分别代入2x﹣3y=6,可求ab的值;将x=9,y=4,x=1,y=36代入mx+ny=40,得到方程组,求出方程为4x+y=40,再将将xcy=12代入4x+y=40,即可求c的值;(2)用加减消元法求解二元一次方程组即可.【详解】解:(1)将xay=2代入2x﹣3y=6,∴2a﹣6=6,a=6,x=9,yb代入2x﹣3y=6,∴18﹣3b=6,b=4,x=9,y=4,x=1,y=36代入mx+ny=40,①×9,得81m+36n=360③,③﹣②,得80m=320,m=4,m=4代入①得,n=1,∴4x+y=40,xcy=12代入4x+y=40,∴4c+12=40,c=7,故答案为:6,4,7;(2)由(1)可得①×3,得12x+3y=120③,②+③,得14x=126,解得x=9,x=9代入①,得y=4,∴方程组的解为故答案为:【点睛】本题考查了同解方程组,加减消元法解二元一次方程组,掌握二元一次方程组解的定义以及解法是解题的关键.5、,两种方法的共同点都是设法消去一个未知数,使二元问题转化为一元问题.【分析】根据题意分别直接利用代入消元法与加减消元法求出方程组的解即可.【详解】解:代入消元法:
    由①得:y=7-x③,
    把③代入②得:5x+21-3x=31,
    解得:x=5,
    x=5代入③得:y=2,
    则方程组的解为
    加减消元法:
    ①×5-②得:2y=4,
    解得:y=2,
    y=2代入①得:x=5,
    则方程组的解为
    两种方法的共同点都是设法消去一个未知数,使二元问题转化为一元问题.【点睛】本题考查解二元一次方程组,主要利用了消元的思想,注意掌握消元的方法有代入消元法与加减消元法. 

    相关试卷

    2021学年第五章 二元一次方程组综合与测试一课一练:

    这是一份2021学年第五章 二元一次方程组综合与测试一课一练,共21页。试卷主要包含了已知二元一次方程组则等内容,欢迎下载使用。

    初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步训练题:

    这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步训练题,共19页。试卷主要包含了方程组的解是等内容,欢迎下载使用。

    初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后复习题:

    这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后复习题,共19页。试卷主要包含了下列方程中,①x+y=6;②x,设m为整数,若方程组的解x,二元一次方程组的解是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map