![精品解析2021-2022学年京改版七年级数学下册第五章二元一次方程组专项测试试题(名师精选)第1页](http://img-preview.51jiaoxi.com/2/3/12698644/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析2021-2022学年京改版七年级数学下册第五章二元一次方程组专项测试试题(名师精选)第2页](http://img-preview.51jiaoxi.com/2/3/12698644/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析2021-2022学年京改版七年级数学下册第五章二元一次方程组专项测试试题(名师精选)第3页](http://img-preview.51jiaoxi.com/2/3/12698644/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版七年级下册第五章 二元一次方程组综合与测试复习练习题
展开
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试复习练习题,共18页。试卷主要包含了二元一次方程的解可以是等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列方程组中,不是二元一次方程组的是( ).A. B. C. D.2、用加减法解方程组由②-①消去未知数,所得到的一元一次方程是( )A. B. C. D.3、m为正整数,已知二元一次方程组有整数解则m2=( )A.4 B.1或4或16或25C.64 D.4或16或644、小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( )A.■=8和★=3 B.■=8和★=5 C.■=5和★=3 D.■=3和★=85、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去得从而求解,这种解法体现的数学思想是( )A.转化思想 B.分类讨论思想 C.数形结合思想 D.公理化思想6、用加减法将方程组中的未知数x消去后,得到的方程是( ).A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=167、《九章算术》中记载了一个问题,原文如下:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”大意是:有几个人一起去买一件物品,每人出8文,多3文;每人出7文,少4文,求人数及该物品的价格.小明用二元一次方程组解此问题,若已经列出一个方程,则符合题意的另一个方程是( )A. B. C. D.8、二元一次方程的解可以是( )A. B. C. D.9、在一个3×3的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图所示的方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则x+2y的值是( ) ﹣3y 1 4 x A.15 B.17 C.19 D.2110、已知方程,,有公共解,则的值为( ).A.3 B.4 C.0 D.-1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知方程是二元一次方程,则m=__,n=__.2、近日天气晴朗,某集团公司准备组织全体员工外出踏青.决定租用甲、乙、丙三种型号的巴士出行(每辆车座位数不少于20),甲型巴士每辆车的乘载量是乙型巴士的2倍,丙型巴士每辆可乘坐40人.现在旅游公司有甲、乙、丙型巴士若干辆,预计该集团公司安排甲型、丙型巴士共计11辆,其余员工安排乙型巴士,每辆巴士均满载,这样乘坐乙型巴士和丙型巴士的员工共376人.临行前,突然有若干人因特殊原因请假,这样一来刚好可以减少租用一辆乙型巴士,且有辆乙型巴士多出5个空位,这样甲、乙两种型号巴士共计装载259人,则该集团公司共有 ___名员工.3、以下是甲、乙两人关于一个两位数的对话:甲说两个数位上的数字和是12,乙说两个数位上的数字差是2.那么这个两位数是______.4、若方程组有正整数解,则整数a的值为____.5、已知二元一次方程,用含的代数式示,则________.三、解答题(5小题,每小题10分,共计50分)1、解下列二元一次方程组:2、已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)在(1)的条件下,若不等式(2m+1)x﹣2m<1的解为x>1,请写出整数m的值.3、解下列方程组:(1);(2).4、已知关于x,y的二元一次方程组.(1)当方程组的解为时,求a的值.(2)当a=﹣2时,求方程组的解.(3)小冉同学模仿第(1)问,提出一个新解法:将代入方程x+2y=a中,即可求出a的值.小冉提出的解法对吗?若对,请完成解答;若不对,请说明理由.5、解方程: ---------参考答案-----------一、单选题1、B【分析】依据二元一次方程组的定义求解即可.【详解】利用二元一次方程组的定义一一进行判断,A和D符合二元一次方程组的定义;方程组中,可以整理为所以C也符合;B中含有三个未知数不符合二元一次方程组的定义.故答案选B【点睛】本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.2、A【分析】观察两方程发现y的系数相等,故将两方程相减消去y即可得到关于x的一元一次方程.【详解】解:解方程组,由②-①消去未知数y,所得到的一元一次方程是2x=9,故选:A.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.3、D【分析】把m看作已知数表示出方程组的解,由方程组的解为整数解确定出m的值,代入原式计算即可求出值.【详解】解:,①-②得:(m-3)x=10,解得:x=,把x=代入②得:y=,由方程组为整数解,得到m-3=±1,m-3=±5,解得:m=4,2,-2,8,由m为正整数,得到m=4,2,8则=4或16或64,故选:D.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4、A【分析】把代入求出;再把代入求出数■即可.【详解】解:把代入得,,解得,;把代入得,,解得,;故选A【点睛】本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.5、A【分析】通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.【详解】解:在解二元一次方程组时,将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,从而将二元一次方程降次转化为一元一次方程求解,这种解法体现的数学思想是:转化思想,故选:A.【点睛】本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.6、D【分析】根据二元一次方程组的加减消元法可直接进行求解.【详解】解:用加减法将方程组中的未知数x消去,则有①-②得:﹣8y=16;故选D.【点睛】本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.7、B【分析】根据题意,可知设每人出x文,总共y文,再列另一个方程即可.【详解】∵,∴设每人出x文,总共y文,∴另一个方程为,故选B.【点睛】本题考查了二元一次方程组,正确设未知数,灵活列方程是解题的关键.8、A【分析】把各个选项答案带进去验证是否成立即可得出答案.【详解】解:A、代入中,方程左边 ,边等于右边,故此选项符合题意;B、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;C、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;D、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;故选A.【点睛】本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解.9、D【分析】根据题意列出两条等式,求出x,y的值即可.【详解】根据题意可得: ,解得,x+2y=5+2×8=5+16=21,故答案为:D.【点睛】本题考查了方程组的实际应用,与代数式求值,掌握列方程组的方法是解题的关键.10、B【分析】联立,,可得:,,将其代入,得值.【详解】 ,解得,把代入中得:,解得:.故选:B.【点睛】本题考查二元一次方程组,掌握公共解是三个方程都满足的解是解题的关键.二、填空题1、 -2 ##0.25【解析】【分析】根据二元一次方程的定义得到:,.据此可以求得、的值.【详解】解:方程是二元一次方程,,,解得,.故答案是:;.【点睛】本题考查了二元一次方程的定义.解题的关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.2、568【解析】【分析】设甲型巴士a辆,乙型巴士b辆,丙型巴士(11−a)辆,乙型巴士乘载量为x人,由题意列出方程,由整数解的思想可求解.【详解】解:设甲型巴士a辆,乙型巴士b辆,丙型巴士(11−a)辆,乙型巴士乘载量为x人,由题意可得:,解得:x=,∵1≤a≤10,且a为整数,∴,∴b=4,∴总人数=4×48+4×24+40×7=568(人),故答案为:568.【点睛】本题考查了三元一次方程组的应用,利用整数解的思想解决问题是本题的关键.3、57或75##75或57【解析】【分析】设个位上的数字为x,十位上的数字为y,根据题意列出方程即可;【详解】设个位上的数字为x,十位上的数字为y,当时,可得,解得:,∴这个两位数是75;当时,可得,解得,∴这个两位数是57;∴这个两位数是57或75.故答案是:57或75.【点睛】本题主要考查了二元一次方程组的应用,准确计算是解题的关键.4、-3或-1或±2【解析】【分析】由②得,再代入①得,即可得到,最后根据方程组有正整数解即可得到整数a的值.【详解】解:,由②得,把入①得,解得,∵方程组有正整数解,∴y要为正整数,即要为正整数,∴或或或∴a=-3或-1或±2.故答案为:-3或-1或±2.【点睛】本题考查了二元一次方程组的整数解,解题的关键是根据代入法把方程组转化为方程,再根据方程组有正整数解解题.5、【解析】【分析】把看做已知数表示出即可.【详解】解:方程,解得:,∴.故答案为:.【点睛】本题考查了解二元一次方程,解题的关键是将看做已知数表示出.三、解答题1、【分析】先把方程组进行整理,然后利用代入消元法解方程组,即可得到答案.【详解】解:,整理得:,由①得:③,把③代入②,得:,解得:,把代入③,得,∴方程组的解为.【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握代入消元法进行解题.2、(1)﹣2<m≤3;(2)﹣1【分析】(1)先求出二元一次方程组的解为,然后根据x为非正数,y为负数,即x≤0,y<0,列出不等式求解即可;(2)先把原不等式移项得到(2m+1)x<2m+1.根据不等式(2m+1)x﹣2m<1的解为x>1,可得2m+1<0,由此结合(1)所求进行求解即可.【详解】解:(1)解方程组用①+②得:,解得③,把③代入②中得:,解得,∴方程组的解为:.∵x为非正数,y为负数,即x≤0,y<0,∴.解得﹣2<m≤3;(2)(2m+1)x﹣2m<1移项得:(2m+1)x<2m+1.∵不等式(2m+1)x﹣2m<1的解为x>1,∴2m+1<0,解得m.又∵﹣2<m≤3,∴m的取值范围是﹣2<m.又∵m是整数,∴m的值为﹣1.【点睛】本题主要考查了解二元一次方程组,解一元一次不等式组,解一元一次不等式,解题的关键在于能够熟知相关求解方法.3、(1);(2).【分析】利用加减法解二元一次方程组即可求解.【详解】解:(1)①×3得 ,②+③得 5x=15,解得x=3,把x=3代入①得 3+y=3,解得y=0,∴二元一次方程组的解是;(2)①×2得 10x-12y=18③,②×3得 21x-12y=-15④,④-③得 11x=-33,解得 x=-3,把x=-3代入①得 -15-6y=9,解得y=-4,∴二元一次方程组的解是.【点睛】本题考查了二元一次方程组的解法,熟练掌握加减法解二元一次方程组的步骤是解题关键,此题也可以用代入法解二元一次方程组.4、(1)3;(2);(3)小冉提出的解法不对,理由见解析【分析】(1)把代入中即可得解;(2)当a=﹣2时,方程组变为,计算即可;(3)根据判断得出不是方程组的解,计算即可;【详解】(1)将代入中得:;(2)当a=﹣2时,方程组为,得:,解得:,∴,∴方程组的解为;(3)小冉提出的解法不对,∵不是方程的解,∴不是该方程组的解,则不一定是方程x+2y=a的解,因此不能代入求解;【点睛】本题主要考查二元一次方程组的解得应用,准确分析计算是解题的关键.5、方程组的解是.【分析】根据加减消元法求解方程组即可;【详解】解:①-②,得,解得,将代入①得,解得,所以方程组的解是.【点睛】本题主要考查了二元一次方程组的求解,熟练掌握运用加减消元法是解题关键.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试精练,共19页。试卷主要包含了解方程组的最好方法是,如图,9个大小,下列方程中,①x+y=6;②x等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试精练,共20页。试卷主要包含了用代入消元法解关于,如果x,已知二元一次方程组则等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步练习题,共19页。试卷主要包含了设m为整数,若方程组的解x,如图,9个大小等内容,欢迎下载使用。