![2021-2022学年京改版七年级数学下册第五章二元一次方程组专题测试练习题(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12698613/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年京改版七年级数学下册第五章二元一次方程组专题测试练习题(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12698613/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年京改版七年级数学下册第五章二元一次方程组专题测试练习题(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12698613/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中北京课改版第五章 二元一次方程组综合与测试随堂练习题
展开
这是一份初中北京课改版第五章 二元一次方程组综合与测试随堂练习题,共21页。试卷主要包含了下列方程是二元一次方程的是等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、《九章算术》是中国古代数学著作之一,书中有这样的一个问题:今有黄金九枚,白银一十一枚,称之重,适等.交易其一,金轻十三两.问金、银一枚各重几何?大意是说:九枚黄金与十一枚白银重量相等,互换一枚,黄金比白银轻13两,问:每枚黄金、白银的重量各为多少?设一枚黄金的重量为x两,一枚白银的重量为y两,则可列方程组为( )A. B.C. D.2、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去得从而求解,这种解法体现的数学思想是( )A.转化思想 B.分类讨论思想 C.数形结合思想 D.公理化思想3、二元一次方程的解可以是( )A. B. C. D.4、已知是二元一次方程的一组解,则m的值是( )A. B.3 C. D.5、关于x,y的方程,k比b大1,且当时,,则k,b的值分别是( ).A., B.2,1 C.-2,1 D.-1,06、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个元,包子每个元,依题意可列方程组为( )A. B.C. D.7、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为( )A. B. C. D.8、下列方程是二元一次方程的是( )A.x﹣xy=1 B.x2﹣y﹣2x=1 C.3x﹣y=1 D.﹣2y=19、已知是方程x﹣my=3的解,那么m的值为( )A.2 B.﹣2 C.4 D.﹣410、已知是二元一次方程组的解,则m+n的值为( )A. B.5 C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某销售商十月份销售X、Y、C三种糖果的数量之比2∶1∶1,X、Y、C三种糖果的单价之比为1∶3∶4.十一月份该销售商为了迎接双“十一”加大了宣传力度.预计三种糖果的营业额都会增加.其中X种糖果增加的营业额占总增加的营业额的,此时,X种糖果的营业额与十一月份三种糖果总营业颁之比为3∶8,为使十一月份Y、C两种糖果的营业额之比为2∶3,则十一月份C种糖果增加的营业额与十一月份总营业额之比为____.2、在《九章算术》的“方程”一章中,一次方程组是由算筹布置而成的,若图1所示的算筹图表示的方程组为,则图2所表示的方程组的解为__________.3、若方程组的解满足2x﹣3y>1,则k的的取值范围为 ___.4、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨,洁柔超值装的价格是其促销价的,而妮飘进口装的价格在其第一天的基础上增加了,第二天洁柔体验装与妮飘进口装的销量之比为,洁柔超值装的销量比第一天的销量减少了.超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_______元.5、方程,当a≠___时,它是二元一次方程,当a=____时,它是一元一次方程.三、解答题(5小题,每小题10分,共计50分)1、解二元一次方程组:.2、5年前母亲的年龄是女儿年龄的15倍,15年后,母亲的年龄比女儿年龄的2倍多6岁.那么现在这对母女的年龄分别是多少?3、用加减法解方程组:4、阳光超市从厂家购进甲、乙两种商品进行销售,若该超市购进甲种商品3件,乙种商品2件,共需花费900元;若购进甲种商品2件,购进乙种商品1件,共需花费500元;(1)求甲、乙两种商品每件的进价分别为多少元;(2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为150元,乙种商品每件的售价400元,要使十一月份购进的甲、乙两种商品共80件全部销售完的总利润不少于6500元,那么该超市最多购进甲种商品多少件?5、学校计划从某花卉供应商家定制一批花卉来装扮校园(花盆全部为同一型号),该商家委托某货运公司负责这批花卉的运输工作.该货运公司有甲、乙两种专门运输花卉的货车,已知1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;2辆甲型货车比3辆乙型货车满载一次少运输200盆花卉.1辆甲型货车满载一次可运输多少盆花卉?1辆乙型货车满载一次可运输多少盆花卉? ---------参考答案-----------一、单选题1、D【分析】根据题目中的等量关系列出二元一次方程组即可.【详解】解:设一枚黄金的重量为x两,一枚白银的重量为y两,则可列方程组为.故选:D.【点睛】此题考查了列二元一次方程组,解题的关键是根据题意找到题目中的等量关系.2、A【分析】通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.【详解】解:在解二元一次方程组时,将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,从而将二元一次方程降次转化为一元一次方程求解,这种解法体现的数学思想是:转化思想,故选:A.【点睛】本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.3、A【分析】把各个选项答案带进去验证是否成立即可得出答案.【详解】解:A、代入中,方程左边 ,边等于右边,故此选项符合题意;B、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;C、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;D、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;故选A.【点睛】本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解.4、A【分析】把代入5x+3y=1即可求出m的值.【详解】把代入5x+3y=1,得10+3m=1,∴m=-3,故选A.【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.5、A【分析】将时,代入,得 ①,再由k比b大1得 ②,将两个方程联立解之即可【详解】将时,代入,得 ①,再由k比b大1得 ②,①②联立,解得,.故选:A.【点睛】此题考查解二元一次方程组的实际应用,正确掌握k、b之间的关系列得方程组是解题的关键.6、B【分析】设馒头每个元,包子每个元,根据李大爷买5个馒头、3个包子的钱数等于元,张大妈买11个馒头、5个包子的钱数等于元列出二元一次方程组即可【详解】解:设馒头每个元,包子每个元,根据题意得故选B【点睛】本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于元是解题的关键.7、A【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.【详解】解:设马每匹价值x两,牛每头价值y两,根据题意可列方程组为:.故选:A.【点睛】此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.8、C【分析】根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.【详解】解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,∴x﹣xy=1不是二元一次方程;B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,∴x2﹣y﹣2x=1不是二元一次方程;C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,∴3x﹣y=1是二元一次方程;D、﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,∴﹣2y=1不是二元一次方程.故选:C.【点睛】此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.9、A【分析】直接将代入x﹣my=3中即可得出答案.【详解】解:∵是方程x﹣my=3的解,∴,解得:,故选:A.【点睛】本题考查了二元一次方程的解,熟知二元一次方程的解即为能使二元一次方程成立的未知数的值.10、B【分析】根据方程组解的定义,方程组的解适合方程组中的每个方程,转化为关于m、n的方程组即可解决问题.【详解】解:∵是二元一次方程组的解,∴,解得,∴m+n=5.故选:B.【点睛】本题考查二元一次方程组的解,理解方程组解的定义是解决问题的关键.二、填空题1、【解析】【分析】根据三种糖果的数量比、单价比,可以按照比例设未知数,即10月份X、Y、C三种糖果的销售的数量和单价分别为2x、x、x;y、3y、4y,则10月份X、Y、C三种糖果的销售额比为2:3:4.因问题中涉及到X的10月销售数量,因此可以设11月份X增加的营业额为7x,则11月份总增加的营业额为15x;再根据X种糖果的营业额与十一月份三种糖果总营业额之比为3:8,建立等式,求出x.可以根据十一月份Y、C两种糖果的营业额之比为2:3算出十一月份C种糖果增加的营业额即可求解.【详解】解:设10月份X、Y、C三种糖果的销售的数量分别为2x、x、x;单价分别为y、3y、4y,∴10月份X、Y、C三种糖果的销售额分别为2xy,3xy,4xy;∵X种糖果增加的营业额占总增加的营业额的,∴设11月份X增加的营业额为7x,则11月份总增加的营业额为15x;又X种糖果的营业额与十一月份三种糖果总营业额之比为3:8,∴(7x+2xy):(15x+9xy)=3:8,解得x=xy,∴十一月份X种糖果的营业额为9xy,三种糖果总营业额为24xy,∴Y,C两种糖果的营业额之和为15xy,若十一月份Y、C两种糖果的营业额之比为2:3,则Y、C两种糖果的营业额分别为6xy,9xy;∴C种糖果增加的营业额为9xy-4xy=5xy,∴十一月份C种糖果增加的营业额与十一月份总营业额之比为5xy:24xy=5:24.【点睛】本题考查了三元一次方程组的应用,掌握用代数式表示每个参数,并用整体法解题是关键.2、【解析】【分析】类比图1所示的算筹的表示方法解答即可.【详解】解:根据图1所示的算筹的表示方法,可推出图2所示的算筹的表示的方程组为 解得: 故答案为: 【点睛】本题考查了二元一次方程组的应用,读懂题意、正确列出方程组是关键.3、##【解析】【分析】将①-②即可得,结合题意即可求得的范围.【详解】①②得, 2x﹣3y>1解得故答案为:【点睛】本题考查了解二元一次方程组,一元一次不等式,利用加减消元法得出方程组的解是解题关键.4、【解析】【分析】设洁柔体验装的促销价为元,销售量为包,洁柔超值装的促销价为元,销售量为包,妮飘进口装的促销价为元,销售量为包,第二天,洁柔体验装的原价为: ,销售量为包,洁柔超值装的原价为: ,销售量为包,妮飘进口装的原价为: ,销售量为 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得,进而可得 为整数,即可求得,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 ,由 都是整数,则 能被 和整除的数即能被整除,即可求得,则这两天妮飘进口装的总销售额为,即 ,代入数值求解即可.【详解】解:设洁柔体验装的促销价为元,销售量为包,洁柔超值装的促销价为元,销售量为包,妮飘进口装的促销价为元,销售量为包,,, 则第二天,洁柔体验装的原价为:,销售量为包,洁柔超值装的原价为:,销售量为包,妮飘进口装的原价为:,销售量为包,,即则第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元即即或 为整数,解得或 洁柔体验装的原价为:是整数,则,洁柔超值装的原价为:是整数则 第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,即解得都是整数,则能被和整除的数即能被整除 故答案为:14960【点睛】本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键.5、 ±1 或1【解析】【分析】根据一元一次方程的定义可得分两种情况讨论,当,即时;当,即时,方程为一元一次方程,即可得的值;根据二元一次方程的定义可得且,解可得的值.【详解】解:关于的方程,是二元一次方程,且,解得:;方程,是一元一次方程,分类讨论如下:当,即时,方程为为一元一次方程;当,即时,方程为为一元一次方程;故答案是:±1;或1.【点睛】本题主要考查了二元一次方程和一元一次方程的定义,解题的关键是掌握一元一次方程的定义:只含有一个未知数(元,且未知数的次数是1,这样的方程叫一元一次方程.二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.三、解答题1、.【分析】方程组利用加减消元法求出解即可.【详解】解:,②-①得:2x=3,解得x=,把x=代入①得:2y=5,解得:y=-,则方程组的解为.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2、母亲现在年龄35岁,女儿现在7岁【分析】设母亲现在年龄x岁,女儿现在y岁,然后根据5年前母亲的年龄是女儿年龄的15倍,15年后,母亲的年龄比女儿年龄的2倍多6岁,列出方程组求解即可.【详解】解:设母亲现在年龄x岁,女儿现在y岁,则解得答:母亲现在年龄35岁,女儿现在7岁.【点睛】本题主要考查了二元一次方程组的应用,解题的关键在于正确理解题意列出方程求解.3、【分析】先把原方程整理得,然后利用加减消元法求解即可.【详解】解:整理得,得,解得,将代入①中得,解得,∴原方程组的解是.【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握加减消元法.4、(1)甲种商品每件进价为100,乙种商品每件进价300元;(2)30件【分析】(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据等量关系:3件甲种商品的花费+2件乙种商品的花费=900;2件甲种商品的花费+1件乙种商品的花费=500,即可列出方程组,解方程组即可;(2)设该超市购进甲种商品m件,根据不等关系:甲商品的利润+乙商品的利润≥6500,列出不等式,不等式即可,再取不等式解集中最大的整数值即可.【详解】(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据题意的 解得故甲种商品每件进价为100,乙种商品每件进价300元(2)设该超市购进甲种商品m件,根据题意得:(150-100)m+(400-300)(80-m)≥6500解得m≤30∵m为整数∴m的最大整数值为30.即该超市最多购进甲种商品30件.【点睛】本题考查了解二元一次方程组及解不等式的应用,关键是理解题意,找到等量关系和不等关系,然后列出方程组和不等式即可解决问题.5、1辆甲型货车满载一次可运输500盆花卉,1辆乙型货车满载一次可运输400盆花卉.【分析】设1辆甲型货车满载一次可运输x盆花卉,1辆乙型货车满载一次可运输y盆花卉,根据等量关系:1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;2辆甲型货车比3辆乙型货车满载一次少运输200盆花卉,列方程组,解方程组即可.【详解】解:设1辆甲型货车满载一次可运输x盆花卉,1辆乙型货车满载一次可运输y盆花卉,根据题意得:,把②代入①×2得,解得,把代入②得,解得x=500,∴,答1辆甲型货车满载一次可运输500盆花卉,1辆乙型货车满载一次可运输400盆花卉.【点睛】本题考查列二元一次方程组解应用题,掌握列二元一次方程组解应用题的方法与步骤,抓住等量关系1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;2辆甲型货车比3辆乙型货车满载一次少运输200盆花卉列方程组是解题关键.
相关试卷
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试精练,共20页。试卷主要包含了已知二元一次方程组则等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试达标测试,共23页。试卷主要包含了用代入消元法解关于等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后练习题,共19页。试卷主要包含了在一次爱心捐助活动中,八年级等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)