![2022年京改版七年级数学下册第五章二元一次方程组专题测评练习题(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12698556/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年京改版七年级数学下册第五章二元一次方程组专题测评练习题(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12698556/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年京改版七年级数学下册第五章二元一次方程组专题测评练习题(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12698556/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版七年级下册第五章 二元一次方程组综合与测试课时训练
展开
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课时训练,共19页。
京改版七年级数学下册第五章二元一次方程组专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去得从而求解,这种解法体现的数学思想是( )A.转化思想 B.分类讨论思想 C.数形结合思想 D.公理化思想2、用代入法解方程组,以下各式正确的是( )A. B.C. D.3、根据大马和小马的对话求大马和小马各驮了几包货物.大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”小马说:“我还想给你1包呢!”大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”小明将这个实际问题转化为二元一次方程组问题.设未知数x,y,已经列出一个方程x﹣1=y+1,则另一个方程应是( )A.x+1=2y B.x+1=2(y﹣1)C.x﹣1=2(y﹣1) D.y=1﹣2x4、若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为( )A.﹣ B. C. D.﹣5、为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知某加密规则为:明文,,,对应密文,,,.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,解密得到的明文是( )A.6,4,1,7 B.1,6,4,7 C.4,6,1,7 D.7,6,1,46、用加减法解方程组由②-①消去未知数,所得到的一元一次方程是( )A. B. C. D.7、为奖励期中考试中成绩优异的同学,七(二)班计划用50元购买笔记本和中性笔两种奖品,已知笔记本的价格为7元,中性笔的价格为2元,若两种奖品都买,则购买的方案有几种?( )A.2 B.3 C.4 D.58、在一个3×3的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图所示的方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则x+2y的值是( ) ﹣3y 1 4 x A.15 B.17 C.19 D.219、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有( )A.3种 B.4种 C.5种 D.6种10、若xa﹣b﹣2ya+b﹣2=0是二元一次方程,则a,b的值分别是( )A.1,0 B.0,﹣1 C.2,1 D.2,﹣3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知x、y满足方程组,则的值为__________.2、若与互为补角,并且的一半比小,则的度数为_________.3、已知是方程的一组解,则=______.4、我国古代《孙子算经》记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是说:“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘,问人和车的数量各是多少?”设共有x辆车,y人,则______,______.5、已知关于x,y的方程组满足,则k =_____.三、解答题(5小题,每小题10分,共计50分)1、如图,已知点A、点B在数轴上表示的数分别是-20、64,动点M从点A出发,以每秒若干个单位长度的速度向右匀速运动,动点N从点B出发,以每秒若干个单位长度的速度向左匀速运动.若点M、N同时出发,则出发后12秒相遇;若点N先出发7秒,则点M出发10秒后与点N相遇.动点M、N运动的速度分别是多少?
2、在解方程组时,甲由于粗心看错了方程组中的a,求出方程组的解为,乙看错了方程组中的b,求得方程组的解为,甲把a看成了什么?乙把b看成了什么?求出原方程组的正确解.3、在解方程组时,由于小明看错了方程①中的a,得到方程组的解为,小华看错了方程②中的b,得到方程组的解为x=2,y=1.(1)求a、b的值;(2)求方程组的正确解.4、若关于x,y的方程组与的解相同,求a,b的值;5、表一x3a9y02b表二x91cy43612(1)关于x,y二元一次方程2x﹣3y=6和mx+ny=40的三组解分别如表一、表二所示,则:a= ;b= ;c= .(2)关于x,y二元一次方程组的解是 . ---------参考答案-----------一、单选题1、A【分析】通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.【详解】解:在解二元一次方程组时,将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,从而将二元一次方程降次转化为一元一次方程求解,这种解法体现的数学思想是:转化思想,故选:A.【点睛】本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.2、B【分析】根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.【详解】解:由②得,代入①得,移项可得,故选B.【点睛】本题考查了代入消元法,熟练掌握代入法是解题的关键.3、B【分析】设大马驮x袋,小马驮y袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.【详解】解:设大马驮x袋,小马驮y袋.根据题意,得.故选:B.【点睛】此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.4、B【分析】解方程组求出x=7k,y=﹣2k,代入2x+3y=6解方程即可.【详解】解:,①+②得:2x=14k,即x=7k,将x=7k代入①得:7k+y=5k,即y=﹣2k,将x=7k,y=﹣2k代入2x+3y=6得:14k﹣6k=6,解得:k=.故选:B.【点睛】此题考查解二元一次方程组,解一元一次方程,掌握解方程及方程组的解法是解题的关键.5、A【分析】根据第四个密文列方程4d=28,解一元一次方程求出d,再根据第三个密文,列二元一次方程把d代入,求出第三个明文c,根据第二个密文列二元一次方程,代入第三个明文c,求出第二个明文b,根据第一个密文列二元一次方程,代入第二个明文b,求出第一个明文a得到明文为a,b,c,d即可.【详解】解:设明文为a,b,c,d,∵某加密规则为:明文,,,对应密文,,,.根据密文14,9,23,28,4d=28,解得d=7,=23,把d=7代入=23得解得=9,把代入=9得,解得a+2b=14,把代入a+2b=14得a+2×4=14,解得a=6,则得到的明文为6,4,1,7.故选:A.【点睛】此题考查了一元一次方程与二元一次方程的应用,弄清题意分步列出方程是解本题的关键.6、A【分析】观察两方程发现y的系数相等,故将两方程相减消去y即可得到关于x的一元一次方程.【详解】解:解方程组,由②-①消去未知数y,所得到的一元一次方程是2x=9,故选:A.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.7、B【分析】设可以购进笔记本x本,中性笔y支,利用总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出购买方案的个数.【详解】解:设可以购进笔记本x本,中性笔y支,依题意得: ,∴ ,∵x,y均为正整数,∴ 或 或 ,∴共有3种购买方案,故选:B.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.8、D【分析】根据题意列出两条等式,求出x,y的值即可.【详解】根据题意可得: ,解得,x+2y=5+2×8=5+16=21,故答案为:D.【点睛】本题考查了方程组的实际应用,与代数式求值,掌握列方程组的方法是解题的关键.9、A【分析】设购买50元和25元的两种换气扇的数量分别为x,y,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可.【详解】解:设购买50元和25元的两种换气扇的数量分别为x,y由题意得:,即,∵x、y都是正整数,∴当x=1时,y=6,当x=2时,y=4,当x=3时,y=2,∴一共有3种方案,故选A.【点睛】本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解.10、C【分析】根据二元一次方程的定义,可得到关于a,b的方程组,解出即可求解.【详解】解:∵xa﹣b﹣2ya+b﹣2=0是二元一次方程,∴ ,解得:. 故选:C【点睛】本题主要考查了二元一次方程的定义和解二元一次方程组,熟练掌握相关知识点是解题的关键.二、填空题1、1【解析】【分析】利用整体思想直接用方程①-②即可得结果.【详解】解:,①-②得,4x+4y=4,x+y=1,故答案为:1.【点睛】本题考查了二元一次方程组的解,解二元一次方程组,解决本题的关键是掌握整体思想.2、【解析】【分析】根据与互为补角,并且的一半比小,然后根据题意列出关于、的二元一次方程组,求解即可.【详解】解:根据题意得,①-②得,,解得,把代入①得,,解得.∴,故答案为:100°.【点睛】本题考查了二元一次方程组在几何中运用,根据题意列出二元一次方程组是解题的关键.3、1【解析】【分析】把代入方程得出,再变形,最后代入求出即可.【详解】解:是关于、的方程的一组解,代入得:,,故答案是:1.【点睛】本题考查了二元一次方程的解和求代数式的值,解题的关键是能够整体代入求值.4、 15 39【解析】【分析】设有x辆车,有y人,根据“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘”列出方程组,解之即可.【详解】解:设有x辆车,有y人,依题意得:,解得,,故答案为:15,39.【点睛】本题考查了二元一次方程组的应用,找准等量关系是解此题的关键.5、4【解析】【分析】将方程组重新组合,求出关于x、y的方程组,再代入求出k即可.【详解】解:关于x,y的方程组满足,∴,∴①+②得:x=1,把x=1代入①得y=2,,∴=4.故答案为:4.【点睛】本题考查了解二元一次方程组的解满足二元一次方程,重新组合能求出x、y的值是解此题的关键.三、解答题1、动点M每秒运动5个单位长度,动点N每秒运动2个单位长度【分析】设动点M、N运动的速度分别是每秒x、y个单位长度,根据“若点M、N同时出发,则出发后12秒相遇;若点N先出发7秒,则点M出发10秒后与点N相遇.”列出方程组,解出即可.【详解】解:设动点M、N运动的速度分别是每秒x、y个单位长度,∵点A、B表示的数分别是-20、64,∴线段AB长为,∴由题意有,解得∴动点M每秒运动5个单位长度,动点N每秒运动2个单位长度.【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.2、甲把a看4,乙把b看成了,原方程组的正确解是【分析】把代入①可解得看错的a,代入②可解得正确的b,把代入①可解得正确的a,代入②可解得看错的b,进一步即可求出结果;【详解】解:由题意把代入①得a+6=10,得看错的a=4,把代入②得1+6b=7,解得正确的b=1;把代入①得-a+12=10,得正确的a=2,把代入②得-1+12b=7,解得看错的b=,则原方程组为,解得;所以甲把a看4,乙把b看成了,原方程组的正确解是.【点睛】本题考查了二元一次方程组的解法,正确理解题意、熟练掌握二元一次方程组的解法是关键.3、(1),;(2) ,【分析】(1)根据方程组的解的定义,应满足方程②,x=2,y=1应满足方程①,将它们分别代入方程②①,就可得到关于a,b的二元一次方程组,解得a,b的值;(2)将a,b代入原方程组,求解即可.【详解】解:(1)将代入②得,解得: 将x=2,y=1代入①得,解得: ,∴,;(2)方程组为:,①+②得: , ,解得: ,将代入①得: , ,解得: ,∴方程组的解为 .【点睛】本题考查了二元一次方程组的解和解二元一次方程组,能把二元一次方程组转化成一元一次方程是解(1)的关键,能求出a、b的值是解(2)的关键.4、【分析】由题意可先解方程组,求出x、y后代入含a、b的两个方程,进一步即可求出结果;【详解】解:解方程组,得,代入,得,解得【点睛】本题考查了同解方程组,正确理解题意、熟练掌握二元一次方程组的解法是关键.5、(1)6;4;7;(2)【分析】(1)将x=a,y=2,x=9,y=b分别代入2x﹣3y=6,可求a、b的值;将x=9,y=4,x=1,y=36代入mx+ny=40,得到方程组,求出方程为4x+y=40,再将将x=c,y=12代入4x+y=40,即可求c的值;(2)用加减消元法求解二元一次方程组即可.【详解】解:(1)将x=a,y=2代入2x﹣3y=6,∴2a﹣6=6,∴a=6,将x=9,y=b代入2x﹣3y=6,∴18﹣3b=6,∴b=4,将x=9,y=4,x=1,y=36代入mx+ny=40,∴,①×9,得81m+36n=360③,③﹣②,得80m=320,∴m=4,将m=4代入①得,n=1,∴4x+y=40,将x=c,y=12代入4x+y=40,∴4c+12=40,∴c=7,故答案为:6,4,7;(2)由(1)可得,①×3,得12x+3y=120③,②+③,得14x=126,解得x=9,将x=9代入①,得y=4,∴方程组的解为,故答案为:.【点睛】本题考查了同解方程组,加减消元法解二元一次方程组,掌握二元一次方程组解的定义以及解法是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试精练,共20页。试卷主要包含了已知二元一次方程组则等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试测试题,共18页。试卷主要包含了下列是二元一次方程的是等内容,欢迎下载使用。
这是一份2020-2021学年第五章 二元一次方程组综合与测试课时训练,共22页。