北京课改版七年级下册第七章 观察、猜想与证明综合与测试习题
展开京改版七年级数学下册第七章观察、猜想与证明综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )
A.0个 B.1个 C.2个 D.3个
2、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150°,则第二次的拐角为( )
A.40° B.50° C.140° D.150°
3、下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
4、一把直尺与一块直角三角板按如图方式摆放,若∠1=28°,则∠2=( )
A.62° B.58° C.52° D.48°
5、下列说法中,假命题的个数为( )
①两条直线被第三条直线所截,同位角相等
②如果两条直线都与第三条直线垂直,那么这两条直线互相平行
③过一点有且只有一条直线与这条直线平行
④在同一平面内,过一点有且只有一条直线与已知直线垂直
A.1个 B.2个 C.3个 D.4个
6、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的( )方向.
A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°
7、如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是( )
A.48°,72° B.72°,108°
C.48°,72°或72°,108° D.80°,120°
8、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )
A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠5
9、下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
10、如图,∠AOC和∠BOD都是直角,如果∠DOC=38°,那么∠AOB的度数是( )
A.128° B.142° C.38° D.152°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知直线AB、CD相交于点O,且A、B和C、D分别位于点O两侧,OE⊥AB,,则____________.
2、如图,在四边形ABCD中,AB∥CD,AD∥BC,点F在BC的延长线上,CE平分∠DCF交AD的延长线于点E,已知∠E=35°,则∠A=___.
3、如图,已知AB∥CD,∠1=55°,则∠2的度数为 ___.
4、若∠α=53°18′,则∠α的补角为_____°.
5、指出图中各对角的位置关系:
(1)∠C和∠D是_____角;
(2)∠B和∠GEF是____角;
(3)∠A和∠D是____角;
(4)∠AGE和∠BGE是____角;
(5)∠CFD和∠AFB是____角.
三、解答题(5小题,每小题10分,共计50分)
1、直线、相交于点,平分,,,求与的度数.
2、如图,已知点,,三点共线,.作,平分.
(1)当时,
①补全图形;
②求的度数;
(2)请用等式表示与之间的数量关系,并呈现你的运算过程.
3、如图,在8×6的正方形网格中,每个小正方形的顶点称为格点,点D是∠ABC的边BC上的一点,点M是∠ABC内部的一点,点A、B、C、D、M均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,并回答问题:
(1)过点M画BC的平行线MN交AB于点N;
(2)过点D画BC的垂线DE,交AB于点E;
(3)点E到直线BC的距离是线段 的长度.
4、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.
5、已知,与互余,OP是的角平分线.
(1)画出所有符合条件的图形.
(2)计算的度数.
---------参考答案-----------
一、单选题
1、C
【分析】
利用对顶角的性质、平行线的性质分别进行判断后即可确定正确的选项.
【详解】
解:①对顶角相等,正确,是真命题;
②在同一平面内,垂直于同一条直线的两直线平行,正确,是真命题;
③相等的角是对顶角,错误,是假命题,反例“角平分线分成的两个角相等”,但它们不是对顶角;
由“两直线平行,同位角相等”,前提是两直线平行,故④是假命题;
故选:C.
【点睛】
本题考查了命题与定理,解题的关键是了解对顶角的性质、平行线的性质等基础知识.
2、D
【分析】
由于拐弯前、后的两条路平行,可考虑用平行线的性质解答.
【详解】
解:∵拐弯前、后的两条路平行,
∴∠B=∠C=150°(两直线平行,内错角相等).
故选:D.
【点睛】
本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.
3、C
【分析】
根据对顶角的定义作出判断即可.
【详解】
解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.
故选C.
【点睛】
本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
4、A
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,
∴,
∴,
故选:A.
【点睛】
本题考查平行线的性质,掌握平行线的性质是解题的关键.
5、C
【分析】
根据平行线的判定与性质、垂直的性质逐个判断即可得.
【详解】
解:①两条平行线被第三条直线所截,同位角相等,则原说法错误,是假命题;
②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,则原说法错误,是假命题;
③过直线外一点有且只有一条直线与这条直线平行,则原说法错误,是假命题;
④在同一平面内,过一点有且只有一条直线与已知直线垂直,则原说法正确,是真命题;
综上,假命题的个数是3个,
故选:C.
【点睛】
本题考查了平行线的判定与性质、垂直的性质,熟练掌握各性质是解题关键.
6、D
【分析】
根据方向角的概念,和平行线的性质求解.
【详解】
解:如图:
∵AF∥DE,
∴∠ABE=∠FAB=43°,
∵AB⊥BC,
∴∠ABC=90°,
∴∠CBD=180°﹣90°﹣43°=47°,
∴C地在B地的北偏西47°的方向上.
故选:D.
【点睛】
本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.
7、B
【分析】
根据题意可得这两个角互补,设其中一个角为x,则另一个角为,由两个角之间的数量关系列出一元一次方程,求解即可得.
【详解】
解:∵两个角的两边两两互相平行,
∴这两个角可能相等或者两个角互补,
∵一个角的等于另一个角的,
∴这两个角互补,
设其中一个角为x,则另一个角为,
根据题意可得:,
解得:,,
故选:B.
【点睛】
题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.
8、D
【分析】
根据平行线的判定与性质、对顶角相等逐项判断即可.
【详解】
解:∵∠1=∠2,
∴AB∥CD,故A正确,不符合题意;
∴∠4=∠5,故C正确,不符合题意;
∵∠EFB与∠3是对顶角,
∴∠EFB=∠3,故B正确,
无法判断∠3=∠5,故D错误,符合题意,
故选:D.
【点睛】
本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.
9、B
【分析】
根据对顶角的定义作出判断即可.
【详解】
解:根据对顶角的定义可知:只有B选项的是对顶角,其它都不是.
故选:B.
【点睛】
本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
10、B
【分析】
首先根据题意求出,然后根据求解即可.
【详解】
解:∵∠AOC和∠BOD都是直角,∠DOC=38°,
∴,
∴.
故选:B.
【点睛】
此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出的度数.
二、填空题
1、130°或50°
【分析】
根据题意作出图形,根据垂直的定义,互余与互补的定义,分类讨论即可
【详解】
①如图,
,
,
②如图,
,
,
综上所述,或
故答案为:130°或50°
【点睛】
本题考查了相交线所成角,对顶角相等,垂直的定义,求一个角的余角,补角,分类讨论是解题的关键.
2、110︒度
【分析】
根据平行线的性质和角平分线的性质可得结论.
【详解】
解:∵AD//BC
∴
∵CE平分∠DCF
∴
∴
∵AB//CD
∴
∵AD//BC
∴
∴
故答案为:110︒
【点睛】
本题主要考查了角的平分线以及平行线的性质,熟练掌握平行线的性质是解答本题的关键.
3、
【分析】
如图(见解析),先根据平行线的性质可得,再根据邻补角的定义即可得.
【详解】
解:如图,,
,
,
故答案为:.
【点睛】
本题考查了平行线的性质、邻补角,熟练掌握平行线的性质是解题关键.
4、126.7
【分析】
由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.
【详解】
解:∵∠A=53°18′,
∴∠A的补角=180°﹣53°18′=126°42′=126.7°.
故答案为:126.7.
【点睛】
本题考查求补角以及角的运算,熟练掌握互为补角的两个角的和等于180°以及角的运算法则是解题的关键.
5、同旁内 同位 内错 邻补 对顶
【分析】
根据同位角,同旁内角,内错角,邻补角,对顶角的定义进行逐一判断即可.
【详解】
解:(1)∠C和∠D是同旁内角;
(2)∠B和∠GEF是同位角;
(3)∠A和∠D是内错角;
(4)∠AGE和∠BGE是邻补角;
(5)∠CFD和∠AFB是对顶角;
故答案为:(1)同旁内 (2)同位 (3)内错 (4)邻补(5)对顶.
【点睛】
本题主要考查了同位角,同旁内角,内错角,邻补角,对顶角的定义,解题的关键在于能够熟知定义.
三、解答题
1、∠3=50°,∠2=65°.
【解析】
【分析】
根据邻补角的性质、角平分线的定义进行解答即可.
【详解】
∵∠FOC=90°,∠1=40°,
∴∠3=180°-∠FOC-∠1 =180°-90°-40°=50°,
∴∠AOD=180°-∠3=180°-50°=130°,
又∵OE平分∠AOD,
∴∠2=∠AOD=65°.
【点睛】
本题考查的是邻补角的概念和性质、角平分线的定义,掌握邻补角之和等于180°是解题的关键.
2、(1)①见详解,②20°;(2),过程见解析
【解析】
【分析】
(1)①根据角平分线的定义作图即可;②由补角的定义求得∠AOC的度数,根据角平分线的定义求得∠AOD 的度数,用∠AOD-∠AOE即可得出结果;
(2)根据(1)的方法,分别讨论时,时,当时,
即可得出与之间的数量关系.
【详解】
解:(1)①补全图形如图所示:
②∵,
∴,
∵平分,
∴,
∵,即,
∴
∴
(2),理由如下:
∵,
∴当时,
∴,
∵平分.
∴,
∵,
∴,
∴,
∴
当时,
∴,
∵平分.
∴,
∵,
∴此时点A与点E重合,∴,
∴
当时,
∴
∵平分.
∴,
∵,
∴,
∴,
∴,
综上所述,
【点睛】
本题考查了余角和补角的计算,角平分线的定义以及分类讨论的思想,解题的关键是灵活运用所学知识解决问题.
3、(1)见解析;(2)见解析;(3)DE
【解析】
【分析】
(1)根据平行线的判定条件:同位角相同,两直线平行,进行作图即可;
(2)根据垂线的定义作图即可;
(3)根据点到直线的距离的定义求解即可.
【详解】
解:(1)如图所示,点N即为所求;
(2)如图所示,点E即为所求;
(3)由题意可知:点E到直线BC的距离是线段DE的长度,
故答案为:DE.
【点睛】
本题主要考查了点到直线的距离,平行线的判定,作垂线,画平行线,解题的关键在于能够熟练掌握相关知识进行求解.
4、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.
【解析】
【分析】
由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.
【详解】
解:因为∠BOC+∠AOC=180º(平角定义),
所以∠AOC是∠BOC的补角,
∠AOD=∠BOC(已知),
所以∠BOC+∠BOD=180º.
所以∠BOD是∠BOC的补角.
所以∠BOC的补角有两个:∠BOD和∠AOC.
因为∠AOC和∠BOC相邻,
所以∠BOC的邻补角为:∠AOC.
∠BOC没有对顶角.
【点睛】
本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.
5、(1)见解析;(2)15°或45°
【解析】
【分析】
(1)分当OC在外部时和当OC在内部时,两种情况,分别作图即可;
(2)根据(1)所求和角平分线,余角的定义求解即可.
【详解】
解:(1)如图所示,即为所求;
(2)当OC在外部时(如图1),
∵,与互余,
∴,
∴,
∴OP是的角平分线,
∴,
∴
当OC在内部时(如图2)
∵,与互余
∴,
∴
∴OP是的角平分线
∴
∴
综上:或45°.
【点睛】
本题主要考查了角平分线的定义,余角的定义,熟知角平分线和余角的定义是解题的关键.
初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练: 这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练,共20页。试卷主要包含了下列命题中,真命题是,下列命题是假命题的有等内容,欢迎下载使用。
数学七年级下册第七章 观察、猜想与证明综合与测试课堂检测: 这是一份数学七年级下册第七章 观察、猜想与证明综合与测试课堂检测,共21页。试卷主要包含了以下命题是假命题的是,直线,下列语句中,错误的个数是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试巩固练习: 这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试巩固练习,共22页。试卷主要包含了下列说法,下列语句中叙述正确的有等内容,欢迎下载使用。