![精品解析2022年京改版七年级数学下册第九章数据的收集与表示同步练习试卷(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12698460/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析2022年京改版七年级数学下册第九章数据的收集与表示同步练习试卷(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12698460/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析2022年京改版七年级数学下册第九章数据的收集与表示同步练习试卷(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12698460/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后练习题
展开这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后练习题,共19页。试卷主要包含了下列调查中,最适合采用全面调查,下列调查中,适合用普查方式的是等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示同步练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是( )
A.7 B.8 C.9 D.10
2、已知一组数据:66,66,62,68,63,这组数据的平均数和中位数分别是( )
A.66,62 B.65,66 C.65,62 D.66,66
3、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是( )
A.1月份生产量最大
B.这七个月中,每月的生产量不断增加
C.1﹣6月生产量逐月减少
D.这七个月中,生产量有增加有减少
4、为了交接某校2000名学生的数学成绩,抽取了其中50名学生的数学成绩进行整理分析,这个调查过程中的样本是( )
A.2000名学生的数学成绩 B.2000
C.被抽取的50名学生的数学成绩 D.50
5、下列调查中,最适合采用全面调查(普查)方式的是( )
A.对兰州市初中生每天阅读时间的调查 B.对市场上大米质量情况的调查
C.对华为某批次手机防水功能的调查 D.对某班学生肺活量情况的调查
6、某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如表所示:
使用寿命x/h | 80 | 120 | 160 |
灯泡只数 | 30 | 30 | 40 |
这批灯泡的平均使用寿命是( )
A. B. C. D.
7、下列调查中最适合采用全面调查的是( )
A.调查甘肃人民春节期间的出行方式 B.调查市场上纯净水的质量
C.调查我市中小学生垃圾分类的意识 D.调查某航班上的乘客是否都持有“绿色健康码”
8、数据处理过程中,以下顺序正确的是( )
A.收集数据→整理数据→描述数据→分析数据
B.收集数据→整理数据→分析数据→描述数据
C.收集数据→分析数据→整理数据→描述数据
D.收集数据→分析数据→描述数据→整理数据
9、下列调查中,适合用普查方式的是( )
A.调查佛山市市民的吸烟情况
B.调查佛山市电视台某节目的收视率
C.调查佛山市市民家庭日常生活支出情况
D.调查佛山市某校某班学生对“文明佛山”的知晓率
10、数据a,a,b,c,a,c,d的平均数是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某城市有120万人口,其中各民族所占比例如图所示,则该市少数民族的人口共有________万人.
2、某校欲招聘一名数学教师,学校对甲乙丙三位候选人进行三项能力测试,各项成绩满分均为100分,根据结果择优录用,三位候选人测试成绩如表:
测试项目 | 成绩 | ||
甲 | 乙 | 丙 | |
教学能力 | 77 | 73 | 73 |
科研能力 | 70 | 71 | 65 |
组织能力 | 64 | 72 | 84 |
根据实际需要学校将三项能力测试得分按6:2:2的比例确定每人的成绩,将被录用的是________
3、某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是______(精确到0.1),众数是______,中位数是______.
4、甲乙两人参加竞聘,笔试和面试成绩的权重分别是是a,b,甲两项得分分别是90和80,乙两项得分分别是84,89,按规则最终成绩高的录取,若甲被录取,则a,b之间的关系是_____
5、某学习小组的6名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、80分、74分,则众数是 _____分.
三、解答题(5小题,每小题10分,共计50分)
1、某中学为选拔一名选手参加我市“学宪法 讲宪法”主题演讲比赛,经研究,按表所示的项目和权数对选拔赛参赛选手进行考评.下图分别是是小明、小华在选拔赛中的得分表和各项权数分布表:
得分表
项目 选手 | 服装 | 普通话 | 主题 | 演讲技巧 |
小明 | 85分 | 70分 | 80分 | 85分 |
小华 | 90分 | 75分 | 75分 | 80分 |
结合以上信息,回答下列问题:
(1)小明在选拔赛中四个项目所得分数的众数是 ,中位数是 ;
(2)评分时按统计表中各项权数考评.
①求出演讲技巧项目对应扇形的圆心角的大小.
②如此考评,小明和小华谁更优秀,派出哪位同学代表学校参加比赛呢?
2、在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:
(1)请将条形统计图补充完整;
(2)在扇形统计图中,C部分所对应的圆心角等于 度;
(3)你觉得哪一类礼盒销售最快,请说明理由.
3、八年级一班共有学生46人,学生的平均身高是1.58m,小明身高1.59m,但小明说他的身高在全班是中等偏下的,班上有25位同学比他高,20位同学比他矮,这可能吗?
4、为了了解秦兵马俑的身高状况.某考古队随机调查了36尊秦兵马俑,它们的高度(单住:cm)如下:172,178,181,184,184,187,187,190,190,175,181,181,184,184,187,187,190,193,178,181,181,184,187,187,187,190,193,178,181,184,184,187,187,190,190,196
(1)这36尊秦兵马俑高度的平均数、中位数和众数分别是多少?
(2)你能据此估计出秦兵马俑的平均高度吗?
5、乒乓球,被称为“国球”,在中华大地有着深厚的群众基础.2000年2月23日,国际乒联特别大会决定从2000年10月1日起,乒乓球比赛将使用直径40mm、重量2.7g的大球,以取代38mm的小球.某工厂按要求加工一批标准化的直径为40mm乒乓球,但是实际生产的乒乓球直径可能会有一些偏差.随机抽查检验该批加工的10个乒乓球直径并记录如下:﹣0.4,﹣0.2,﹣0.1,﹣0.1,﹣0.1,0,+0.1,+0.2,+0.3,+0.5(“+”表示超出标准;“﹣”表示不足标准).
(1)其中偏差最大的乒乓球直径是 mm;
(2)抽查的这10个乒乓球中,平均每个球的直径是多少mm?
(3)若误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品,这10个球的合格率是 ;良好率是 .
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.
【详解】
解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,
所以有x﹣12+x=2×3,
解得x=9.
故选:C.
【点睛】
此题考查了平均数和一元一次方程的应用,解题的关键是正确分析题目中的等量关系列方程求解.
2、B
【解析】
【分析】
根据平均数的计算公式(,其中是平均数,是这组数据,是数据的个数)和中位数的定义(将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数)即可得.
【详解】
解:这组数据的平均数是,
将这组数据按从小到大进行排序为,
则这组数据的中位数是66,
故选:B.
【点睛】
本题考查了平均数和中位数,熟记公式和定义是解题关键.
3、B
【解析】
【分析】
根据折线图的特点判断即可.
【详解】
解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;
每月的生产量不断增加,故7月份的生产量最大,A错误;
故选:B.
【点睛】
本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
4、C
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.
【详解】
解:A、2000名学生的数学成绩是总体,故选项不合题意;
B、2000是个体的数量,故选项不合题意;
C、这50名学生的数学成绩是总体的一个样本,故选项符合题意;
D、50是样本容量,故选项不合题意;
故选C
【点睛】
本题主要考查了总体、个体、样本和样本容量的定义,解题要分清具体问题中的总体、个体与样本的区别,关键是明确考查对象的范围.样本容量只是个数字,没有单位.
5、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
解:A、对兰州市初中生每天阅读时间的调查,工作量大,不易普查;
B、对市场上大米质量情况的调查,调查具有破坏性,不易普查;
C、对华为某批次手机防水功能的调查,调查具有破坏性,不易普查;
D、对某班学生肺活量情况的调查,人数较少,适合普查;
故选:D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
6、B
【解析】
【分析】
先用每组的组中值表示这组的使用寿命,然后根据加权平均数的定义计算.
【详解】
解:这批灯泡的平均使用寿命是
=124(h),
故选:B.
【点睛】
本题考查了加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则(x1w1+x2w2+…+xnwn)÷(w1+w2+…+wn)叫做这n个数的加权平均数.
7、D
【解析】
【分析】
根据抽样调查和全面调查的定义逐一判断即可.
【详解】
解|:A、调查甘肃人民春节期间的出行方式,应采用抽样调查,故不符合题意;
B、调查市场上纯净水的质量,应采用抽样调查,故不符合题意;
C、调查我市中小学生垃圾分类的意识,应采用抽样调查,故不符合题意;
D、调查某航班上的乘客是否都持有“绿色健康码”,应采用全面调查,故符合题意;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
8、A
【解析】
【分析】
根据数据处理的基本过程是:收集,整理,描述,分析数据即可解答.
【详解】
解:数据处理的基本过程是:收集,整理,描述,分析数据,
故选:A.
【点睛】
本题考查整理数据的过程,解题的关键是理解并牢记整理数据的过程.
9、D
【解析】
【分析】
根据普查和抽样调查的定义进行逐一判断即可.
【详解】
解:A、调查佛山市市民的吸烟情况,应采用抽样调查,故此选项不符合题意;
B、调查佛山市电视台某节目的收视率,应采用抽样调查,故此选项不符合题意;
C、调查佛山市市民家庭日常生活支出情况,应采用抽样调查,故此选项不符合题意;
D、调查佛山市某校某班学生对“文明佛山”的知晓率,应采用普查,故此选项符合题意;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
10、B
【解析】
【分析】
根据加权平均数的计算公式,列出算式,计算即可求解.
【详解】
解:∵数据:a,b,c,d的权数分别是3,1,2,1
∴这组数据的加权平均数是.
故选B.
【点睛】
本题考查的是加权平均数的求法,关键是根据加权平均数的计算公式列出算式.
二、填空题
1、18
【解析】
【分析】
用整个圆的面积表示这个市的总人口80万,把这个市的总人口看作单位“1”,其中朝鲜族、满族和回族都是少数民族,要求该市少数民族人口数,需要先求出该市少数民族人口所占的百分比,再根据百分数乘法的意义,用总人口乘少数民族所占的百分比即可求出少数民族的人数.
【详解】
120×(6%+4%+5%)=18(万人).
该市少数民族人口共有18万人
故答案为:18.
【点睛】
解决本题关键是从图中读出数据,找出单位“1”,再根据基本的数量关系求解.
2、丙
【解析】
【分析】
根据加权平均数的定义求解即可,分别求得甲乙丙三人的平均成绩,进而即可判断,加权平均数计算公式为:,其中代表各数据的权.
【详解】
三项能力测试得分按6:2:2的比例,
三项能力的权分别为:0.6,0.2,0.2,
甲,
乙,
丙,
.
将被录用的是丙.
故答案为:丙.
【点睛】
本题考查了求加权平均数,掌握加权平均数的定义是解题的关键.
3、 73.0 80,90 80
【解析】
【分析】
根据平均数的定义,用总分除以总人数即可求出平均数,找出出现的次数最多数就是众数,把这47个数从小到大排列,最中间的数是第24个数,即可求出中位数.
【详解】
解:(1)平均数是:
=73.0;
(2)90分的有11人,80分的有11人,出现的次数最多,则众数是 80和90,
(3)把这47个数从小到大排列,最中间的数是第24个数,是80,则中位数是80;
故答案为;73.0;80和90;80.
【点睛】
此题考查了平均数、众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),出现次数最多的数是众数.
4、a>1.5b
【解析】
【分析】
先表示甲乙的加权平均分,再根据甲被录取列不等式即可.
【详解】
甲的加权平均分为:90a+80b
乙的加权平均分为:84a+89b
∵甲被录取
∴甲的分数>乙的分数
∴90a+80b>84a+89b,
解得a>1.5b,
故答案为:a>1.5b.
【点睛】
本题考查加权平均数,解答本题的关键是明确题意,利用加权平均数的计算方法解答.
5、94
【解析】
【分析】
根据众数的定义直接解答即可.
【详解】
解:∵94分出现了2次,出现的次数最多,
∴众数是94分.
故答案为:94.
【点睛】
本题考查了众数的定义.众数是一组数据中出现次数最多的数据,注意:众数可以不止一个.
三、解答题
1、(1)85分,82.5分;(2)①144°;②小明更优秀,应派出小明代表学校参加比赛
【解析】
【分析】
(1)根据众数和中位数的定义求解即可;
(2)①根据扇形统计图中的数据,可以得到演讲技巧项目的百分比,进而求出圆心角大小;②根据加权平均数的定义列式计算出小明、小华的成绩,从而得出答案.
【详解】
解:(1)小明在选拔赛中四个项目所得分数的众数是85分,中位数是=82.5(分);
(2)①1-5%-15%-40%=40%
36040%=144°
答:演讲技巧项目对应扇形的圆心角为144°;
②小明分数为:
小华分数为:
80.75>77.75
∴小明更优秀,应派出小明代表学校参加比赛
【点睛】
本题考查了众数、中位数、加权平均数,解题的关键是掌握众数、中位数、加权平均数的定义.
2、(1)见解析;(2)72;(3)A类礼盒销售最快,理由见解析
【解析】
【分析】
(1)求出销售的C类礼盒的数量,即可补全条形统计图;
(2)C类礼盒相应圆心角的度数为360°乘以所占的百分比即可;
(3)比较四类礼盒销售的数量即可得出答案.
【详解】
解:(1)1000×50%-168-80-150=102(盒),补全条形统计图如图所示:
(2)360°×(1-35%-25%-20%)=72°,
故答案为:72;
(3)在相同的时间内,A类礼盒共销售168盒,B类礼盒共销售80盒,C类礼盒共销售102盒,A类礼盒共销售150盒,
因此,A类礼盒销售最快.
【点睛】
本题考查条形统计图、扇形统计图,理解统计图中各个数量之间的关系是解决问题的关键.
3、可能
【解析】
【分析】
利用平均数与总体的关系来考虑.
【详解】
解:可能.
班上有25个同学比他高,即在平均线以下的同学占少数,但比小明高的同学的身高比平均身高高,可幅度不大,比小明低的同学的身高比平均身高低的幅度大,故还是有可能的.
【点睛】
本题不是直接求平均数,而是利用平均数的概念综合来分析,平均数受极值的影响较大.
4、(1)这36尊兵马俑高度的平均数是185cm,中位数是185.5cm,众数是187cm;(2)一般而言,可以估计秦兵马俑的平均高度为185cm左右
【解析】
【分析】
(1)根据加权平均数的定义求解平均数;把给出的此组数据中的数按从小到大(或从大到小)的顺序排列,处于最中间的两个数的平均数就是此组数据的中位数;这些数据中出现次数最多的那个数就是此组数据的众数;
(2)根据平均数回答即可.
【详解】
解:(1)(172+175+178×3+181×6+184×7+187×9+190×6+193×2+196)÷36
=6660÷36
=185(cm),
∴平均数为185cm;
从小到大的顺序排列为:172,175,178,178,178,181,181,181,181,181,181,184,184,184,184,184,184,184,187,187,187,187,187,187,187,187,187,190,190,190,190,190,190,193,193,196,
∴中位数为:(184+187)÷2=185.5(cm);
∵此组数据中出现次数最多的是187,
∴所以此组数据众数是187(cm),
答:这36尊兵马俑高度的平均数是185cm,中位数是185.5cm,众数是187cm;
(2)∵这36尊兵马俑高度的平均数是185cm,
∴一般而言,可以估计秦兵马俑的平均高度为185cm左右.
【点睛】
此题主要考查了求平均数、中位数、众数的方法的运用,熟练掌握平均数、中位数和众数的定义是解题的关键.
5、(1);(2);(3),
【解析】
【分析】
(1)根据题意列式计算即可;
(2)根据平均数的定义即可得到结论;
(3)根据误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品分别占总数的百分比,即可求解.
【详解】
解:(1)其中偏差最大的乒乓球的直径是
故答案为
(2)这10乒乓球平均每个球的直径是
故答案为
(3)这些球的合格率是
良好率为
故答案为,
【点睛】
此题考查了正数和负数的意义,解题的关键是理解正和负的相对性,明确什么是一对具有相反意义的量.
相关试卷
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试同步达标检测题,共18页。试卷主要包含了水果店内的5个苹果,其质量等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试随堂练习题,共19页。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评,共20页。试卷主要包含了下列说法中正确的是,下列调查中,适合用普查方式的是等内容,欢迎下载使用。