初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后测评
展开这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后测评,共21页。试卷主要包含了如图,直线AB∥CD,直线AB,下列命题是假命题的有,如图,直线AB等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,若要使与平行,则绕点至少旋转的度数是( )
A.B.C.D.
2、如图,已知AO⊥OC,OB⊥OD,∠COD=38°,则∠AOB的度数是( )
A.30ºB.145ºC.150ºD.142º
3、如图,∠1=∠2,∠3=25°,则∠4等于( )
A.165°B.155°C.145°D.135°
4、如所示各图中,∠1与∠2是对顶角的是( )
A.B.
C.D.
5、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )
A.30°B.40°C.50°D.60°
6、如图,直线AB和CD相交于点O,若∠AOC=125°,则∠BOD等于( )
A.55°B.125°C.115°D.65°
7、下列命题是假命题的有( )
①在同一个平面内,不相交的两条直线必平行;
②内错角相等;
③相等的角是对顶角;
④两条平行线被第三条直线所截,所得同位角相等.
A.4个B.3个C.2个D.1个
8、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为( )
A.80°B.90°C.100°D.110°
9、如图,直线AB、CD相交于点O,EO⊥AB于点O,∠EOC=35°,则∠AOD的度数为( )
A.55°B.125°C.65°D.135°
10、已知,则的余角的补角是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若一个角的余角为35°,则它的补角度数为 ______.
2、已知一个角的余角是35°,那么这个角的度数是_____°.
3、(1)已知与互余,且,则________.(2)+________=180°.(3)若与是同类项,则m+n=________.
4、已知一个角等于70°38′,则这个角的余角等于______.
5、如图,已知 AB∥CD∥EF,BC∥AD,AC 平分∠BAD,那么图中与∠AGE 相等的角(不包括∠AGE)有_____个.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在ABC中,DEAC,DFAB.
(1)判断∠A与∠EDF之间的大小关系,并说明理由.
(2)求∠A+∠B+∠C的度数.
2、如图,如果∠1=60°,∠2=120°,∠D=60°,那么AB与CD平行吗?BC与DE呢?
观察下面的解答过程,补充必要的依据或结论.
解∵∠1=60°(已知)
∠ABC=∠1 (① )
∴∠ABC=60°(等量代换)
又∵∠2=120°(已知)
∴(② )+∠2=180°(等式的性质)
∴AB∥CD (③ )
又∵∠2+∠BCD=(④ °)
∴∠BCD=60°(等式的性质)
∵∠D=60°(已知)
∴∠BCD=∠D (⑤ )
∴BC∥DE (⑥ )
3、如图,已知∠AOB=90°,∠COD=90°,OE为∠BOD的平分线,∠BOE=17°,求∠AOC的度数.
4、如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°,
(1)请判断AB与CD的位置关系并说明理由;
(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.
5、一个角的余角的3倍比这个角的补角大18°,求这个角的度数.
---------参考答案-----------
一、单选题
1、A
【分析】
根据“两直线平行,内错角相等”进行计算.
【详解】
解:如图,
∵l1∥l2,
∴∠AOB=∠OBC=42°,
∴80°-42°=38°,
即l1绕点O至少旋转38度才能与l2平行.
故选:A.
【点睛】
考查了旋转的性质和平行线的性质,根据平行线的性质得到∠AOB=∠OBC=42°是解题的关键,难度不大.
2、D
【分析】
根据垂直的定义得到∠AOC=∠DOB=90°,由互余关系得到∠BOC=52°,然后计算∠AOC+∠BOC即可.
【详解】
解:∵AO⊥OC,OB⊥OD,
∴∠AOC=∠DOB=90°,
而∠COD=38°,
∴∠BOC=90°-∠COD=90°-38°=52°,
∴∠AOB=∠AOC+∠BOC=90°+52°=142°.
故选:D.
【点睛】
本题考查了余角的概念:若两个,角的和为90°,那么这两个角互余.
3、B
【分析】
设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.
【详解】
解:设∠4的补角为,如下图所示:
∠1=∠2,
,
,
.
故选:B.
【点睛】
本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.
4、B
【分析】
根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.
【详解】
解:A.∠1与∠2没有公共顶点,不是对顶角;
B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;
C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;
D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.
故选:B.
【点睛】
本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.
5、C
【分析】
由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.
【详解】
解:由题意,
∵∠BMN与∠AME是对顶角,
∴∠BMN=∠AME=130°,
∵AB∥CD,
∴∠BMN+∠DNM=180°,
∴∠DNM=50°;
故选:C.
【点睛】
本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.
6、B
【分析】
根据对顶角相等即可求解.
【详解】
解:∵直线AB和CD相交于点O,∠AOC=125°,
∴∠BOD等于125°.
故选B.
【点睛】
本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键.
7、C
【分析】
根据平面内两条直线的位置关系:平行,相交,可判断①,根据两直线平行,内错角相等可判断②,根据对顶角的定义:有公共的顶点,角的两边互为反向延长线可判断③,由两直线平行,同位角相等可判断④,从而可得答案.
【详解】
解:在同一个平面内,不相交的两条直线必平行;原命题是真命题,故①不符合题意;
两直线平行,内错角相等;原命题是假命题;故②符合题意;
相等的角不一定是对顶角;原命题是假命题;故③符合题意;
两条平行线被第三条直线所截,所得同位角相等;原命题是真命题,故④不符合题意;
故选C
【点睛】
本题考查的是真假命题的判断,同时考查平面内两条直线的位置关系,平行线的性质,对顶角的定义,掌握“判断真假命题的方法”是解本题的关键.
8、D
【分析】
直接利用对顶角以及平行线的性质分析得出答案.
【详解】
解:
∵∠1=70°,
∴∠1=∠3=70°,
∵ABDC,
∴∠2+∠3=180°,
∴∠2=180°−70°=110°.
故答案为:D.
【点睛】
此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.
9、B
【分析】
先根据余角的定义求得,进而根据邻补角的定义求得即可.
【详解】
EO⊥AB,∠EOC=35°,
,
.
故选:B.
【点睛】
本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.
10、A
【分析】
根据余角和补角定义解答.
【详解】
解:的余角的补角是,
故选:A .
【点睛】
此题考查余角和补角的定义:和为90度的两个角互为余角,和为180度的两个角是互为补角.
二、填空题
1、125°度
【分析】
若两个角的和为 则这两个角互余,若两个角的和为 则这两个角互补,根据定义直接可得答案.
【详解】
解: 一个角的余角为35°,
这个角为:
则它的补角度数为:
故答案为:
【点睛】
本题考查的是余角与补角的计算,掌握“余角与补角的含义”是解本题的关键.
2、55
【分析】
根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角进行计算即可.
【详解】
解:这个角的是90°35°=55°,
故答案为:55.
【点睛】
此题主要考查了余角,解题的关键是明确两个角互余,和为90°.
3、
【分析】
(1)根据余角的定义和角度的四则运算法则进行求解即可;
(2)根据角度的四则运算法则求解即可;
(3)根据同类项的定义,先求出m、n的值,然后代值计算即可.
【详解】
解:(1)与互余,且,
∴;
故答案为:;
(2);
故答案为:;
(3)∵与是同类项,
∴,
∴,
∴.
故答案为:.
【点睛】
本题主要考查了求一个角的余角,角度的四则运算,同类项的定义,代数式求值,解一元一次方程,熟知相关知识是解题的关键.
4、19°22′
【分析】
根据余角的定义解决此题.
【详解】
解:∵90°-70°38'=19°22′.
∴根据余角的定义,这个角的余角等于19°22′.
故答案为:19°22′.
【点睛】
本题主要考查了余角的定义,熟练掌握余角的定义是解决本题的关键.
5、5
【分析】
由AB∥CD∥EF,可得∠AGE=∠GAB=∠DCA;由BC∥AD,可得∠GAE=∠GCF;又因为AC平分∠BAD,可得∠GAB=∠GAE;根据对顶角相等可得∠AGE=∠CGF.所以图中与∠AGE相等的角有5个.
【详解】
解:∵AB∥CD∥EF,
∴∠AGE=∠GAB=∠DCA;
∵BC∥AD,
∴∠GAE=∠GCF;
又∵AC平分∠BAD,
∴∠GAB=∠GAE;
∵∠AGE=∠CGF.
∴∠AGE=∠GAB=∠DCA=∠CGF=∠GAE=∠GCF.
∴图中与∠AGE相等的角有5个
故答案为:5.
【点睛】
本题考查对顶角、邻补角及角平分线的定义和平行线的性质,根据题意仔细观察图形并找出全部答案是解题关键.
三、解答题
1、(1)两角相等,见解析;(2)180°
【解析】
【分析】
(1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;
(2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;
【详解】
(1)两角相等,理由如下:
∵DE∥AC,
∴∠A=∠BED(两直线平行,同位角相等).
∵DF∥AB,
∴∠EDF=∠BED(两直线平行,内错角相等),
∴∠A=∠EDF(等量代换).
(2)∵DE∥AC,
∴∠C=∠EDB(两直线平行,同位角相等).
∵DF∥AB,
∴∠B=∠FDC(两直线平行,同位角相等).
∵∠EDB+∠EDF+∠FDC=180°,
∴∠A+∠B+∠C=180°(等量代换).
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
2、对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.
【解析】
【分析】
先求出∠ABC=60°,即可证明∠ABC+∠2=180°得到AB∥CD,然后求出∠BCD=∠D 即可证明BC∥DE.
【详解】
解∵∠1=60°(已知)
∠ABC=∠1 (对顶角相等),
∴∠ABC=60°(等量代换),
又∵∠2=120°(已知),
∴∠ABC+∠2=180°(等式的性质),
∴AB∥CD (同旁内角互补,两直线平行),
又∵∠2+∠BCD=180°,
∴∠BCD=60°(等式的性质),
∵∠D=60°(已知),
∴∠BCD=∠D (等量代换),
∴BC∥DE (内错角相等,两直线平行),
故答案为:对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.
【点睛】
本题主要考查了平行线的判定,对顶角相等,解题的关键在于能够熟练掌握平行线的判定条件.
3、146°
【解析】
【分析】
由OE是∠BOD的平分线,∠BOE=17°,可知∠BOD;又由∠COD=90°,∠AOB=90°,所以根据圆周角360°可计算∠AOC.
【详解】
解:∵OE为∠BOD的平分线,
∴∠BOD=2∠BOE,
∵∠BOE=17°,
∴∠BOD=34°.
又∵∠AOB=∠COD=90°,∠AOB+∠COD+∠AOC+∠BOD=360°,
∴∠AOC =360°-∠AOB-∠COD-∠BOD=360°-90°-90°-34°=146°.
【点睛】
本题主要考查角的比较与运算,涉及到余角、圆周角、角平分线的性质等知识点,找到相应等量关系是解此题的关键.
4、(1)平行,理由见解析;(2)∠BAE+∠MCD=90°,理由见解析;(3)∠BAC=∠PQC+∠QPC,理由见解析.
【解析】
【分析】
(1)先根据CE平分∠ACD,AE平分∠BAC可得∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,根据平行线的判定定理即可得出结论;
(2)如图,过E作EF∥AB,由AB//CD可得EF∥AB∥CD,根据平行线的性质可得∠BAE=∠AEF,∠FEC=∠DCE,可得∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;
(3)如图,过点C作CM//PQ,可得∠PQC=∠MCN,∠QPC=∠PCM,根据AB∥CD可知∠BAC+∠ACD=180°,根据∠PCQ+∠PCM+∠MCN=180°,可得∠QPC+∠PQC+∠PCQ=180°,即可得出∠BAC=∠PQC+∠QPC.
【详解】
(1)∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD
(2)∠BAE+∠MCD=90°;理由如下:
如图,过E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠AEC=∠AEF+∠FEC=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD=∠MCD,
∴∠BAE+∠MCD=90°.
(3)如图,过点C作CM//PQ,
∴∠PQC=∠MCN,∠QPC=∠PCM,
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠PCQ+∠PCM+∠MCN=180°,
∴∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC.
【点睛】
本题考查平行线的判定与性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.
5、36°
【解析】
【分析】
根据题意,先设这个角的度数为x°,则这个角的余角的度数为90°-x°,这个角的补角的度数为180°-x°,再列方程进行计算.
【详解】
解:设这个角的度数是x°.
由题意,得 .
解得,
∴这个角的度数为36°.
【点睛】
本题主要考查了一元一次方程的实际应用,与余角补角有关的计算,掌握一元一次方程的解法是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题,共20页。试卷主要包含了若的补角是125°,则的余角是,下列语句中,错误的个数是等内容,欢迎下载使用。
这是一份初中北京课改版第七章 观察、猜想与证明综合与测试一课一练,共22页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。
这是一份2020-2021学年第七章 观察、猜想与证明综合与测试测试题,共22页。试卷主要包含了如图,直线AB,下列说法正确的个数是等内容,欢迎下载使用。