初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题
展开京改版七年级数学下册第七章观察、猜想与证明必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,O是直线AB上一点,OE平分∠AOB,∠COD=90°,则图中互余的角有( )对.
A.5 B.4 C.3 D.2
2、一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) .
A.第一次向左拐30°,第二次向右拐30°.
B.第一次向右拐50°,第二次向左拐130°.
C.第一次向左拐50°,第二次向左拐130°.
D.第一次向左拐50°,第二次向右拐130°.
3、如果一个角的补角是这个角的4倍,那么这个角为( )
A.36° B.30° C.144° D.150°
4、如图,一副三角尺按不同的位置摆放,下列摆放方式中与相等的是( ).
A. B.
C. D.
5、下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
6、如图,已知直线,相交于O,平分,,则的度数是( )
A. B. C. D.
7、下列命题中,①在同一平面内,若,,则;②相等的角是对顶角;③能被整除的数也能被整除;④两点之间线段最短.真命题有( )
A.个 B.个 C.个 D.个
8、如图,直线AB、CD相交于点O,EO⊥AB于点O,∠EOC=35°,则∠AOD的度数为( )
A.55° B.125° C.65° D.135°
9、如图,将一副三角尺按不同位置摆放,下列选项的摆放方式中∠1与∠2互余的是( )
A. B.
C. D.
10、下列说法中正确的是( )
A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短
C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,AB与CD相交于点O,OE是∠AOC的平分线,且OC恰好平分∠EOB,则∠AOD=_____度.
2、填写推理理由:
如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.
证明:∵CD∥EF,
∴∠DCB=∠2________.
∵∠1=∠2,
∴∠DCB=∠1________.
∴GD∥CB________.
∴∠3=∠ACB________.
3、如图,将一块直角三角板与一张两边平行的纸条按照如图所示的方式放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2=∠3;④∠4+∠5=180°.其中正确的是________.(填序号)
4、已知∠α与∠β互余,且∠α=40°,则∠β的度数为________.
5、如图,点O在直线AB上,OD⊥OE,垂足为O.OC是∠DOB的平分线,若∠AOD=70°,则∠COE=__________度.
三、解答题(5小题,每小题10分,共计50分)
1、如图①,直线AB与直线CD相交于点O,, 过点O作射线.
(1)若射线OF平分, 求的度数;
(2)若将图①中的直线绕点O逆时针旋转至图②, ,当射线平分时,射线C是否平分,请说明理由;
(3)若, , 将图①中的直线绕点O按每秒5° 的速度逆时针旋转 度(),设旋转的时间为t秒,当时,求t的值.
2、已知如图,AO⊥BC,DO⊥OE.
(1)不添加其它条件情况下,请尽可能多地写出图中有关角的等量关系(至少3个);
(2)如果∠COE=35°,求∠AOD的度数.
3、如图,∠AGB=∠EHF,∠C=∠D.
(1)求证:BD∥CE;
(2)求证:∠A=∠F.
4、综合与实践
【问题情境】利用旋转三角尺开展数学活动,探究体会角在旋转过程中的变化.
【操作发现】如图①,将一个45°角的直角三角形三角板ABO的顶点O放在直线OD上的O处,斜边OA在直线OD上,延长BO至C.
(1)如图②,将图①中的三角板ABO绕着点O逆时针旋转90°后得到△O,此时∠BO= °,OA平分∠ ;
【实践探究】
(2)如图③,将图②中的三角板绕点O逆时针继续旋转一定角度,使OD在∠内部,且∠DOC=45°,请探究:
①∠1与∠3之间的数量关系为 .
理由如下:(请利用图中的字母和数字完成证明过程)
因为∠DOC=45°,
所以∠2+∠3=45°.
又因为∠ +∠2=45°,
所以∠2+∠ =∠ +∠2.
所以 .
②∠1的补角有 个,分别为 ,
③∠2的余角为 .
5、如图,已知点,,三点共线,.作,平分.
(1)当时,
①补全图形;
②求的度数;
(2)请用等式表示与之间的数量关系,并呈现你的运算过程.
---------参考答案-----------
一、单选题
1、B
【分析】
根据余角的定义找出互余的角即可得解.
【详解】
解:∵OE平分∠AOB,
∴∠AOE=∠BOE=90°,
∴互余的角有∠AOC和∠COE,∠AOC和∠BOD,∠COE和∠DOE,∠DOE和∠BOD共4对,
故选:B.
【点睛】
本题考查了余角的定义,从图中确定余角时要注意按照一定的顺序,防止遗漏.
2、A
【分析】
根据题意分析判断即可;
【详解】
由第一次向左拐30°,第二次向右拐30°可得转完两次后相当于在原方向上转过了,和原来方向相同,故A正确;
第一次向右拐50°,第二次向左拐130°可得转完两次后相当于在原方向上左拐,故B错误;
第一次向左拐50°,第二次向左拐130°可得转完两次后相当于在原方向上右拐,故C错误;
第一次向左拐50°,第二次向右拐130°可得转完两次后相当于在原方向上右拐,故D错误;
综上所述,符合条件的是A.
故选:A.
【点睛】
本题主要考查了平行的判定与性质,准确分析判断是解题的关键.
3、A
【分析】
设这个角为 ,则它的补角为 ,根据“一个角的补角是这个角的4倍”,列出方程,即可求解.
【详解】
解:设这个角为 ,则它的补角为 ,根据题意得:
,
解得: .
故选:A
【点睛】
本题主要考查了补角的性质,一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.
4、C
【分析】
根据同角的余角相等,补角定义,和平角的定义、三角形内角和对各小题分析判断即可得解.
【详解】
解:A、+=180°−90°=90°,互余;
B、+=60°+30°+45°=135°;
C、根据同角的余角相等,可得=;
D、+=180°,互补;
故选:C.
【点睛】
本题考查了余角和补角、三角形内角和,是基础题,熟记概念与性质是解题的关键.
5、C
【分析】
根据对顶角的定义作出判断即可.
【详解】
解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.
故选C.
【点睛】
本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
6、C
【分析】
先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.
【详解】
解:∵OA平分∠EOC,∠EOC=100°,
∴∠AOC=∠EOC=50°,
∴∠BOC=180°﹣∠AOC=130°.
故选:C.
【点睛】
本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.
7、B
【分析】
根据对顶角的定义以及数的整除性和两点之间线段最短分析得出即可.
【详解】
解:①在同一平面内,若a⊥b,b⊥c,则a∥c,故为真命题;
②相等的角不一定是对顶角,故为假命题;
③能被2整除的数不一定能被4整除,故为假命题;
④两点之间线段最短,故为真命题;
故选B.
【点睛】
此题主要考查了命题与定理,熟练掌握相关的定理是解题关键.
8、B
【分析】
先根据余角的定义求得,进而根据邻补角的定义求得即可.
【详解】
EO⊥AB,∠EOC=35°,
,
.
故选:B.
【点睛】
本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.
9、D
【分析】
由题意直接根据三角板的几何特征以及余角的定义进行分析计算判断即可.
【详解】
解:A.∵∠1+∠2度数不确定,
∴∠1与∠2不互为余角,故错误;
B.∵∠1+45°+∠2+45°=180°+180°=360°,
∴∠1+∠2=270°,
即∠1与∠2不互为余角,故错误;
C.∵∠1+∠2=180°,
∴∠1与∠2不互为余角,故错误;
D.∵∠1+∠2+90°=180°,
∴∠1+∠2=90°,
即∠1与∠2互为余角,故正确.
故选:D.
【点睛】
本题主要考查余角和补角,熟练掌握余角的定义即若两个角的和为90°,则这两个角互为余角是解题的关键.
10、B
【分析】
根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.
【详解】
解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;
B.两点之间的所有连线中,线段最短,正确;
C.相等的角不一定是对顶角,故不符合题意;
D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;
故选:B.
【点睛】
本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.
二、填空题
1、60
【分析】
根据角平分线的定义得出∠AOE=∠COE,∠COE=∠BOC,求出∠AOE=∠COE=∠BOC,根据∠AOE+∠COE+∠BOC=180°,求出∠BOC,再根据对顶角相等求出答案即可.
【详解】
解:∵OE是∠AOC的平分线,OC恰好平分∠EOB,
∴∠AOE=∠COE,∠COE=∠BOC,
∴∠AOE=∠COE=∠BOC,
∵∠AOE+∠COE+∠BOC=180°,
∴∠BOC=60°,
∴∠AOD=∠BOC=60°,
故答案为:60.
【点睛】
本题考查了邻补角、对顶角,角平分线的性质知识点,做题的关键是掌握邻补角互补,角的平分线分成的两个角相等,对顶角相等.
2、两直线平行,同位角相等 等量代换 内错角相等,两直线平行 两直线平行,同位角相等
【分析】
根据平行线的性质得出,求出,根据平行线的判定得出,利用平行线的性质即可得出.
【详解】
证明:
∵,
∴(两直线平行,同位角相等)
∵,
∴.(等量代换)
∴(内错角相等,两直线平行).
∴(两直线平行,同位角相等).
故答案为:①两直线平行,同位角相等;②等量代换;③内错角相等,两直线平行;④两直线平行,同位角相等.
【点睛】
题目主要考查平行线的判定定理及性质,理解题意,结合图形,综合运用判定的性质定理是解题关键.
3、①②④
【分析】
根据平行线的性质,直角三角板的性质对各小题进行验证即可得解.
【详解】
解:∵纸条的两边互相平行,
∴∠1=∠2,∠3=∠4,∠4+∠5=180°,故①,②,④正确;
∵三角板是直角三角板,
∴∠2+∠4=180°-90°=90°,
∵∠3=∠4,
∴∠2+∠3=90°,故③不正确.
综上所述,正确的是①②④.
故答案为:①②④.
【点睛】
本题考查了平行线的性质,直角三角板的性质,熟记性质与概念并准确识图是解题的关键.
4、50°
【分析】
根据两个角互余,则两个角相加之和为90°,进行求解即可.
【详解】
解:∵∠α与∠β互余,且∠α=40°,
∴∠β=90°-∠α=50°,
故答案为:50°.
【点睛】
本题考查了求一个角的余角,熟知两个角互余则它们之和等于90°是解答本题的关键.
5、35
【分析】
根据补角的性质,可得∠BOD=110°,再由OC是∠DOB的平分线,可得 ,又由OD⊥OE,可得到∠BOE=20°,即可求解.
【详解】
解:∵∠AOD=70°,∠AOD+∠BOD=180°,
∴∠BOD=110°,
∵OC是∠DOB的平分线,
∴ ,
∵OD⊥OE,
∴∠DOE=90°,
∴∠BOE=∠BOD-∠DOE=20°,
∴∠COE=∠BOC-∠BOE=35°.
故答案为:35
【点睛】
本题主要考查了补角的性质,角平分线的定义,角的和与差,熟练掌握补角的性质,角平分线的定义,角的和与差运算是解题的关键.
三、解答题
1、(1);(2)平分,理由见解析;(3)秒或秒
【解析】
【分析】
(1)由补角的定义得出∠AOF的度数,由角平分线的定义得出∠FOC的度数,根据余角定义得出的度数;
(2)由得出,由角平分线的定义得出,得即可得出结论;
(3)由余角和补角的定义求得、的度数,然后分当s时,当s时,当s时分别讨论得出结果.
【详解】
解:(1),
,
,
(2) 平分,理由如下:
,
.
OE平分,
即射线OC平分.
(3)∵且,
∴
又∵,
∴,
∴
①当s时
直线绕点O按每秒5°的速度逆时针旋转
解得
②当s时
直线绕点O按每秒5°的速度逆时针旋转
此时无解
③当s时
直线绕点O按每秒5°的速度逆时针旋转
解得35
综上所述,当时, 秒或秒.
【点睛】
本题考查了补角和余角的定义,角平分线的定义,一元一次方程的运用,结合题意学会分类讨论的思想避免漏算答案.
2、(1),;(2).
【解析】
【分析】
(1)先根据垂直可得,再根据角的和差即可得;
(2)根据(1)的结论即可得出答案.
【详解】
解:(1),
,
,
,
即图中有关角的等量关系有,;
(2)由(1)已得:,
,
.
【点睛】
本题考查了垂直、角的和差,熟练掌握两条直线互相垂直,则四个角为直角是解题关键.
3、(1)证明见解析;(2)证明见解析.
【解析】
【分析】
(1)由∠AGB=∠1,∠AGB=∠EHF,可得∠1=∠EHF,则BD∥CE;
(2)由BD∥CE,可得∠D=∠2,则∠2=∠C,推出AC∥DF,则∠A=∠F.
【详解】
证明:(1)∵∠AGB=∠1,∠AGB=∠EHF,
∴∠1=∠EHF,
∴BD∥CE;
(2)∵BD∥CE,
∴∠D=∠2,
∵∠D=∠C,
∴∠2=∠C,
∴AC∥DF,
∴∠A=∠F.
【点睛】
本题主要考查了平行线的性质与判定,对顶角相等,熟练掌握平行线的性质与判定条件是解题的关键.
4、(1)90,BO;(2)①∠1=∠3,1,3,1,∠1=∠3;②2,∠AOA'、∠BOB';③∠
【解析】
【分析】
(1)图中三角板ABO绕着点O逆时针旋转90°后得到△O,可知∠BO即为旋转角度,即∠BO=90°;已知∠AOB=45°,可知∠AO=45°,即OA平分∠BO;
(2)①根据所给出的证明过程进行填空即可;
②由①可知,∠1=∠3,∠1+∠AOA'=180°,∠3+∠BOB=180°,可知∠1的补角有2个,分别为∠AOA'、∠BOB;
③根据图形进行转化即可得出∠2的余角.
【详解】
解:(1)此时∠BO= 90 °,OA平分∠ BO ;
(2)①∠1=∠2(相等)
理由如下:因为∠DOC=45°,
所以∠2+∠3=45°.
又因为∠ 1 +∠2=45°
所以∠2+∠ 3 =∠ 1 +∠2
所以∠1=∠3
②由图可知,∠1+∠AOA'=180°,∠3+∠BOB=180°,
∵∠1=∠3,
∴∠1的补角有2个,分别为∠AOA'、∠BOB' ,
③由图可知,∠2+∠1=45°,
∴∠2=45°-∠1,
即∠2的余角为:90°-(45°-∠1)=45°+∠1=45°+∠3=∠,
故:∠2的余角为∠.
【点睛】
本题主要考查的是角度中的基础定义,熟练掌握其中的定义是解本题的关键.
5、(1)①见详解,②20°;(2),过程见解析
【解析】
【分析】
(1)①根据角平分线的定义作图即可;②由补角的定义求得∠AOC的度数,根据角平分线的定义求得∠AOD 的度数,用∠AOD-∠AOE即可得出结果;
(2)根据(1)的方法,分别讨论时,时,当时,
即可得出与之间的数量关系.
【详解】
解:(1)①补全图形如图所示:
②∵,
∴,
∵平分,
∴,
∵,即,
∴
∴
(2),理由如下:
∵,
∴当时,
∴,
∵平分.
∴,
∵,
∴,
∴,
∴
当时,
∴,
∵平分.
∴,
∵,
∴此时点A与点E重合,∴,
∴
当时,
∴
∵平分.
∴,
∵,
∴,
∴,
∴,
综上所述,
【点睛】
本题考查了余角和补角的计算,角平分线的定义以及分类讨论的思想,解题的关键是灵活运用所学知识解决问题.
初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试复习练习题: 这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试复习练习题,共21页。试卷主要包含了下列说法中正确的个数是等内容,欢迎下载使用。
初中数学第七章 观察、猜想与证明综合与测试综合训练题: 这是一份初中数学第七章 观察、猜想与证明综合与测试综合训练题,共19页。试卷主要包含了以下命题是假命题的是,下列命题中,为真命题的是等内容,欢迎下载使用。
初中北京课改版第七章 观察、猜想与证明综合与测试练习题: 这是一份初中北京课改版第七章 观察、猜想与证明综合与测试练习题,共24页。试卷主要包含了下列命题中,为真命题的是,若的补角是125°,则的余角是,如图,C,下列说法中正确的个数是等内容,欢迎下载使用。