


初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课堂检测
展开京改版七年级数学下册第七章观察、猜想与证明难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,AB∥CD,AE∥CF,∠A=41°,则∠C的度数为( )
A.139° B.141° C.131° D.129°
2、如图:O为直线AB上的一点,OC为一条射线,OD平分,OE平分,图中互余的角共有( )
A.1对 B.2对 C.4对 D.6对
3、下列说法正确的个数是( )
①平方等于本身的数是正数;
②单项式﹣π2x3y2的次数是7;
③近似数7与7.0的精确度不相同;
④因为a>b,所以|a|>|b|;
⑤一个角的补角大于这个角本身.
A.1个 B.2个 C.3个 D.4个
4、下列说法中正确的是( )
A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短
C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点
5、若∠α=55°,则∠α的余角是( )
A.35° B.45° C.135° D.145°
6、一个角的余角比这个角的补角的一半小40°,则这个角为( )
A.50° B.60° C.70° D.80°
7、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )
A.30° B.40° C.50° D.60°
8、一个角的补角比这个角的余角大( ).
A.70° B.80° C.90° D.100°
9、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠A=60°,则∠DBC的度数为( )
A.45° B.25° C.15° D.20°
10、如图,货轮O航行过程中,同时发现灯塔A和轮船B,灯塔A在货轮O北偏东40°的方向,∠AOE=∠BOW,则轮船B在货轮( )
A.西北方向 B.北偏西60° C.北偏西50° D.北偏西40°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知∠1=71°,则∠1的补角等于__________度.
2、如图,已知AO⊥OC,OB⊥OD,∠COD=42°,则∠AOB=__________.
3、若α=25°57′,则2α的余角等于_____.
4、如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD于点G,若∠1=∠BEF=68°,则∠EGF的度数为_______.
5、已知与互为补角,且,则______.
三、解答题(5小题,每小题10分,共计50分)
1、补全下列推理过程:已知:如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,求证:AB∥CD.
证明:∵CE平分∠BCD(______)
∴∠1=_____(_______)
∵∠1=∠2=70°(已知)
∴∠1=∠2=∠4=70°(________)
∴AD∥BC(________)
∴∠D=180°-_______=180°-∠1-∠4=40°
∵∠3=40°(已知)
∴______=∠3
∴AB∥CD(_______)
2、已知,与互余,OP是的角平分线.
(1)画出所有符合条件的图形.
(2)计算的度数.
3、如图1所示,MN//PQ,∠ABC与MN,PQ分别交于A、C两点
(1)若∠MAB=∠QCB=20°,则B的度数为 度.
(2)在图1分别作∠NAB与∠PCB的平分线,且两条角平分线交于点F.
①依题意在图1中补全图形;
②若∠ABC=n°,求∠AFC的度数(用含有n的代数式表示);
(3)如图2所示,直线AE,CD相交于D点,且满足∠BAM=m∠MAE, ∠BCP=m∠DCP,试探究∠CDA与∠ABC的数量关系
4、如图,已知AEBF,AC⊥AE,BD⊥BF,AC与BD平行吗?补全下面的解答过程(理由或数学式).
解:∵AEBF,
∴∠EAB= .( )
∵AC⊥AE,BD⊥BF,
∴∠EAC=90°,∠FBD=90°.
∴∠EAC=∠FBD( )
∴∠EAB﹣ =∠FBG﹣ ,
即∠1=∠2.
∴ ( ).
5、(1)已知:如图1所示,已知∠AOC=90°,∠AOB=38°,OD平分∠BOC,请判断∠AOD和∠BOD之间的数量关系,并说明理由;
(2)已知:如图2,点O在直线AD上,射线OC平分∠BOD.请判断∠AOC与∠BOC之间的数量关系,并说明理由;
(3)已知:如图3,∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.直接写出锐角∠MPN的度数是 .
---------参考答案-----------
一、单选题
1、A
【分析】
如图,根据AECF,得到∠CGB=41°,根据ABCD,即可得到∠C=139°..
【详解】
解:如图,∵AECF,
∴∠A=∠CGB=41°,
∵ABCD,
∴∠C=180°-∠CGB=139°.
故选:A
【点睛】
本题考查了平行线的性质,熟知平行线的性质是解题关键.
2、C
【分析】
根据余角的定义求解即可.余角:如果两个角相加等于90°,那么这两个角互为余角.
【详解】
解:∵OD平分,OE平分,
∴,
又∵,即,
∴,,,,
∴互余的角共有4对.
故选:C.
【点睛】
此题考查了余角的定义,角平分线的概念等知识,解题的关键是熟练掌握余角的定义.余角:如果两个角相加等于90°,那么这两个角互为余角.
3、A
【分析】
根据平方等于本身的数是0和1,即可判断①;根据单项式次数的定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数,即可判断②;根据近似数的精确度可以判断③;根据绝对值的定义可以判断④;根据补角的定义:如果两个角的和为180度,那么这两个角互补即可判断⑤.
【详解】
解:①平方等于本身的数是1和0,故此说法错误;
②单项式﹣π2x3y2的次数是5,故此说法错误;
③近似数7精确到个位,近似数7.0精确到十分位,两者的精确度不相同,故此说法正确;
④因为a>b,不一定有 |a|>|b|,如1>-2,但是|1|<|-2|,故此说法错误;
⑤一个角的补角可能大于等于或小于这个角本身,故此说法错误;
故选A.
【点睛】
本题主要考查了有理数的乘方,绝对值,单项式次数,补角和近似数,解题的关键在于能够熟练掌握相关知识进行求解.
4、B
【分析】
根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.
【详解】
解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;
B.两点之间的所有连线中,线段最短,正确;
C.相等的角不一定是对顶角,故不符合题意;
D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;
故选:B.
【点睛】
本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.
5、A
【分析】
根据余角的定义即可得.
【详解】
由余角定义得∠α的余角为90°减去55°即可.
解:由余角定义得∠α的余角等于90°﹣55°=35°.
故选:A.
【点睛】
本题考查了余角的定义,熟记定义是解题关键.
6、D
【分析】
设这个角为x,根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,表示出它的余角和补角,列式解方程即可.
【详解】
设这个角为x,则它的余角为(90°-x),补角为(180°-x),
依题意得
解得x=80°
故选D.
【点睛】
本题考查了余角和补角的概念,是基础题,熟记概念并列出方程是解决本题的关键.
7、C
【分析】
由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.
【详解】
解:由题意,
∵∠BMN与∠AME是对顶角,
∴∠BMN=∠AME=130°,
∵AB∥CD,
∴∠BMN+∠DNM=180°,
∴∠DNM=50°;
故选:C.
【点睛】
本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.
8、C
【分析】
根据互补即两角的和为180°,互余的两角和为90°,设这个角为x,即可求出答案.
【详解】
解:设这个角为x,则这个角的补角为180°-x,这个角的补角为90°-x,
根据题意得:180°-x-(90°-x)=90°,
故选:C.
【点睛】
本题主要考查了余角和补角的概念与性质.互为余角的两角的和为90°,互为补角的两角之和为180°.
9、C
【分析】
直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.
【详解】
解:由题意可得:∠EDF=45°,∠ABC=30°,
∵AB∥CF,
∴∠ABD=∠EDF=45°,
∴∠DBC=45°-30°=15°.
故选:C.
【点睛】
此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.
10、D
【分析】
根据题意得:∠AON=40°,再由等角的余角相等,可得∠BON=∠AON=40°,即可求解.
【详解】
解:根据题意得:∠AON=40°,
∵∠AOE=∠BOW,∠AON+∠AOE=90°,∠BON+∠BOW=90°,
∴∠BON=∠AON=40°,
∴轮船B在货轮的北偏西40°方向.
故选:D
【点睛】
本题主要考查了余角的性质,方位角,熟练掌握等角的余角相等是解题的关键.
二、填空题
1、109
【分析】
两角互为补角,和为180°,那么计算180°-∠1可求补角.
【详解】
解:设所求角为∠α,
∵∠α+∠1=180°,∠1=71,
∴∠α=180°-71=109°.
故答案为:109
【点睛】
此题考查的是角的性质,两角互余和为90°,互补和为180°.
2、138°
【分析】
根据垂直的定义得到∠AOC=∠DOB=90°,由互余关系得到∠BOC=90°-∠COD=90°-42°=48°,即可求出∠AOB.
【详解】
解:∵AO⊥OC,OB⊥OD,
∴∠AOC=∠DOB=90°,
又∵∠COD=42°,
∴∠BOC=90°-∠COD=90°-42°=48°,
∴∠AOB=∠AOC+∠BOC=90°+48°=138°.
【点睛】
本题考查了余角的概念:若两个角的和为90°,那么这两个角互余.
3、38°6′
【分析】
根据余角的和等于90°列式计算即可求解.
【详解】
解:∵α=25°57′,
∴2α=51°54′,
∴2α的余角=90°﹣51°54′=38°6′.
故答案为:38°6′.
【点睛】
此题主要考查角度的计算,解题的关键是熟知余角的性质.
4、34°
【分析】
根据角平分线的性质可求出的度数,然后由平行线的判定与性质即可得出的度数.
【详解】
解:平分,
又
故答案为
【点睛】
本题主要考查了平行线的判定与性质、角平分线的性质,灵活应用平行线的判定与性质是解题的关键.
5、
【分析】
根据题意可得,即可求解.
【详解】
解:∵与互为补角,
∴ ,
∵,
∴.
故答案为:
【点睛】
本题主要考查了补角的定义,熟练掌握互补的两角的和为 是解题的关键.
三、解答题
1、见解析
【解析】
【分析】
由已知CE平分∠BCD可得∠1= ∠4,利用等式的性质得出∠1=∠2=∠4=70°,根据直线判定定理得出AD∥BC,利用平角定义求出∠D=180°-∠BCD即可.
【详解】
证明:∵CE平分∠BCD( 已知 ),
∴∠1= ∠4 ( 角平分线定义 ),
∵∠1=∠2=70°已知,
∴∠1=∠2=∠4=70°(等量代换),
∴AD∥BC(内错角相等,两直线平行),
∴∠D=180°-∠BCD=180°-∠1-∠4=40°,
∵∠3=40°已知,
∴ ∠D =∠3,
∴AB∥CD(内错角相等,两直线平行).
故答案为:已知;∠4 ,角平分线定义 ;等量代换;内错角相等,两直线平行;∠BCD;∠D;内错角相等,两直线平行.
【点睛】
本题考查平行线判定,角平分线定义,平角,掌握平行线判定方法,角平分线定义,平角是解题关键.
2、(1)见解析;(2)15°或45°
【解析】
【分析】
(1)分当OC在外部时和当OC在内部时,两种情况,分别作图即可;
(2)根据(1)所求和角平分线,余角的定义求解即可.
【详解】
解:(1)如图所示,即为所求;
(2)当OC在外部时(如图1),
∵,与互余,
∴,
∴,
∴OP是的角平分线,
∴,
∴
当OC在内部时(如图2)
∵,与互余
∴,
∴
∴OP是的角平分线
∴
∴
综上:或45°.
【点睛】
本题主要考查了角平分线的定义,余角的定义,熟知角平分线和余角的定义是解题的关键.
3、(1)40;(2)①见解析;②;(3)m∠CDA+∠ABC=180°
【解析】
【分析】
(1)作MN、PQ的平行线HG,根据两直线平行,内错角相等即可解答;
(2)①根据题意作图即可,②过F作 ,根据两直线平行,同旁内角互补和内错角相等即可解答;
(3)延长AE交PQ于点G,设∠MAE=x°,∠DCP=y°,知∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,∠BCQ=180°−my°,根据(1)中所得结论知∠ABC=mx°+180°−my°,即y°−x°= ,由MNPQ知∠MAE=∠DGP=x°,根据∠CDA=∠DCP−∠DGC可得答案.
【详解】
解:(1)作 ,
∵MN//PQ,
∴,
∴ ,
∴ ;
(2)①如图所示,
②过点F作 ,
∴ ,
∴ ,
∵ ,
∴ ,
∵
∴ ,
∴ ,
∵ ,
∴ ;
(3)延长AE交PQ于点G,
设∠MAE=x°,∠DCP=y°,则∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,
∴∠BCQ=180°−my°,
由(1)知,∠ABC=mx°+180°−my°,
∴y°−x°=,
∵MNPQ,
∴∠MAE=∠DGP=x°,
则∠CDA=∠DCP−∠DGC
=y°−x°
=,
即m∠CDA+∠ABC=180°.
【点睛】
本题主要考查平行线的性质,解题的关键是掌握平行线的性质和判定等知识点.
4、∠FBG;两直线平行,同位角相等;等量代换;∠EAC;∠FBD;AC;BD;同位角相等,两直线平行
【解析】
【分析】
由平行线的性质得∠EAB=∠FBD+∠2,再证∠1=∠2,然后由平行线的判定即可得出结论.
【详解】
∵AE∥BF,
∴∠EAB=∠FBG(两直线平行,同位角相等).
∵AC⊥AE,BD⊥BF,
∴∠EAC=90°,∠FBD=90°.
∴∠EAC=∠FBD(等量代换),
∴∠EAB﹣∠EAC=∠FBG﹣∠FBD,
即∠1=∠2.
∴AC∥BD(同位角相等,两直线平行).
故答案为:∠FBG;两直线平行,同位角相等;等量代换;∠AEC,∠FBD;AC,BD,同位角相等,两直线平行.
【点睛】
本题考查平行线的判定与性质,掌握平行线的判定与性质是解题的关键.
5、(1)∠AOD+∠BOD=90°,理由见解析;(2)∠AOC+∠BOC=180°,理由见解析;(3)45°
【解析】
【分析】
(1)由∠AOC=90°,得到∠AOD+∠COD=90°,再由OD平分∠BOC,可得∠BOC=2∠COD=2∠BOD,则∠AOD+∠BOD=90°;
(2)由OC平分∠BOD,得到∠BOD=2∠COD=2∠BOC,再由∠AOC+∠COD=180°,即可得到∠AOC+∠BOC=180°;
(3)由∠EPQ和∠FPQ互余,得到∠EPQ+∠FPQ=90°,由射线PM平分∠EPQ,射线PN平分∠FPQ,得到,,则.
【详解】
解:(1)∠AOD+∠BOD=90°,理由如下:
∵∠AOC=90°,
∴∠AOD+∠COD=90°,
∵OD平分∠BOC,
∴∠BOC=2∠COD=2∠BOD,
∴∠AOD+∠BOD=90°;
(2)∠AOC+∠BOC=180°,理由如下:
∵OC平分∠BOD,
∴∠BOD=2∠COD=2∠BOC,
∵∠AOC+∠COD=180°,
∴∠AOC+∠BOC=180°;
(3)∵∠EPQ和∠FPQ互余,
∴∠EPQ+∠FPQ=90°,
∵射线PM平分∠EPQ,射线PN平分∠FPQ,
∴,,
∴,
故答案为:45°.
【点睛】
本题主要考查了与余角和补角有关的计算,角平分线的定义,解题的关键在于能够熟练掌握相关知识进行求解.
数学七年级下册第七章 观察、猜想与证明综合与测试同步练习题: 这是一份数学七年级下册第七章 观察、猜想与证明综合与测试同步练习题,共22页。试卷主要包含了下列说法中正确的是,下列语句中,是命题的是等内容,欢迎下载使用。
初中数学第七章 观察、猜想与证明综合与测试巩固练习: 这是一份初中数学第七章 观察、猜想与证明综合与测试巩固练习,共18页。试卷主要包含了命题等内容,欢迎下载使用。
初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后测评: 这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后测评,共18页。试卷主要包含了若∠α=55°,则∠α的余角是,下列语句中叙述正确的有,下列说法中,真命题的个数为,命题等内容,欢迎下载使用。