初中北京课改版第七章 观察、猜想与证明综合与测试课后复习题
展开京改版七年级数学下册第七章观察、猜想与证明必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列图形中,∠1与∠2不是对顶角的有( )
A.1个 B.2个 C.3个 D.0个
2、若的余角为,则的补角为( )
A. B. C. D.
3、下列说法正确的个数是( )
①平方等于本身的数是正数;
②单项式﹣π2x3y2的次数是7;
③近似数7与7.0的精确度不相同;
④因为a>b,所以|a|>|b|;
⑤一个角的补角大于这个角本身.
A.1个 B.2个 C.3个 D.4个
4、下列说法中正确的是( )
A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短
C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点
5、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150°,则第二次的拐角为( )
A.40° B.50° C.140° D.150°
6、以下命题是假命题的是( )
A.的算术平方根是2
B.有两边相等的三角形是等腰三角形
C.三角形三个内角的和等于180°
D.过直线外一点有且只有一条直线与已知直线平行
7、如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是( )
A.48°,72° B.72°,108°
C.48°,72°或72°,108° D.80°,120°
8、如图:O为直线AB上的一点,OC为一条射线,OD平分,OE平分,图中互余的角共有( )
A.1对 B.2对 C.4对 D.6对
9、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )
A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠5
10、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为( )
A.80° B.90° C.100° D.110°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,AB与CD相交于点O,OE是∠AOC的平分线,且OC恰好平分∠EOB,则∠AOD=_____度.
2、_________°,的余角是________.
3、如图,已知ABCD,BE平分∠ABC,DE平分∠ADC,若∠ABC =m°,∠ADC =n°,则∠E=_________°.
4、已知∠α=65°14'15″,那么∠α的余角等于 _____.
5、如图,过直线AB上一点O作射线OC、OD ,并且OD是∠ AOC的平分线,∠BOC=29°18′, 则∠BOD的度数为___________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,AB//CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合),∠ADC=70°.设∠BED=n°.
(1)若点B在点A的左侧,求∠ABC的度数(用含n的代数式表示);
(2)将(1)中的线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠ABC的度数是否改变.若改变,请求出∠ABC的度数(用含n的代数式表示);若不变,请说明理由.
2、已知:如图,直线相交于点,平分,若,求的度数.
3、已知如图,AO⊥BC,DO⊥OE.
(1)不添加其它条件情况下,请尽可能多地写出图中有关角的等量关系(至少3个);
(2)如果∠COE=35°,求∠AOD的度数.
4、如图,已知,,,试说明直线AD与BC垂直(请在下面的解答过程的空格内填空或在括号内填写理由).
理由:C,(已知)
,( )
.( )
又,(已知)
=180°.(等量代换)
,( )
.( )
,(已知)
,
.
5、根据解答过程填空(写出推理理由或数学式):
如图,已知∠DAF=∠F,∠B=∠D,试说明AB∥DC.
证明:∵∠DAF=∠F(已知).
∴AD∥BF( ),
∴∠D=∠DCF( ).
∵∠B=∠D(已知),
∴( )=∠DCF(等量代换),
∴AB∥DC( ).
---------参考答案-----------
一、单选题
1、C
【分析】
根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.
【详解】
解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;
②中∠1和∠2是对顶角,故②不符合题意;
③中∠1和∠2的两边不互为反向延长线,故③符合题意;
④中∠1和∠2没有公共点,故④符合题意.
∴∠1 和∠2 不是对顶角的有3个,
故选C.
【点睛】
此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.
2、C
【分析】
根据余角和补角的定义,先求出,再求出它的补角即可.
【详解】
解:∵的余角为,
∴,
的补角为,
故选:C.
【点睛】
本题考查了余角和补角的运算,解题关键是明确两个角的和为90度,这两个角互为余角,两个角的和为180度,这两个角互为补角.
3、A
【分析】
根据平方等于本身的数是0和1,即可判断①;根据单项式次数的定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数,即可判断②;根据近似数的精确度可以判断③;根据绝对值的定义可以判断④;根据补角的定义:如果两个角的和为180度,那么这两个角互补即可判断⑤.
【详解】
解:①平方等于本身的数是1和0,故此说法错误;
②单项式﹣π2x3y2的次数是5,故此说法错误;
③近似数7精确到个位,近似数7.0精确到十分位,两者的精确度不相同,故此说法正确;
④因为a>b,不一定有 |a|>|b|,如1>-2,但是|1|<|-2|,故此说法错误;
⑤一个角的补角可能大于等于或小于这个角本身,故此说法错误;
故选A.
【点睛】
本题主要考查了有理数的乘方,绝对值,单项式次数,补角和近似数,解题的关键在于能够熟练掌握相关知识进行求解.
4、B
【分析】
根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.
【详解】
解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;
B.两点之间的所有连线中,线段最短,正确;
C.相等的角不一定是对顶角,故不符合题意;
D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;
故选:B.
【点睛】
本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.
5、D
【分析】
由于拐弯前、后的两条路平行,可考虑用平行线的性质解答.
【详解】
解:∵拐弯前、后的两条路平行,
∴∠B=∠C=150°(两直线平行,内错角相等).
故选:D.
【点睛】
本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.
6、A
【分析】
分别利用算术平方根、等腰三角形的判定、三角形内角和公式、平行的相关内容,进行分析判断即可.
【详解】
解:A、的算术平方根应该是, A是假命题,
B、有两边相等的三角形是等腰三角形,B是真命题,
C、三角形三个内角的和等于180°,C是真命题,
D、过直线外一点有且只有一条直线与已知直线平行,D是真命题,
故选:A.
【点睛】
本题主要是考查了真假命题,正确的命题为真命题,错误的命题为假命题,根据所学知识,对各个命题的正确与否进行分析,这是解决该题的关键.
7、B
【分析】
根据题意可得这两个角互补,设其中一个角为x,则另一个角为,由两个角之间的数量关系列出一元一次方程,求解即可得.
【详解】
解:∵两个角的两边两两互相平行,
∴这两个角可能相等或者两个角互补,
∵一个角的等于另一个角的,
∴这两个角互补,
设其中一个角为x,则另一个角为,
根据题意可得:,
解得:,,
故选:B.
【点睛】
题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.
8、C
【分析】
根据余角的定义求解即可.余角:如果两个角相加等于90°,那么这两个角互为余角.
【详解】
解:∵OD平分,OE平分,
∴,
又∵,即,
∴,,,,
∴互余的角共有4对.
故选:C.
【点睛】
此题考查了余角的定义,角平分线的概念等知识,解题的关键是熟练掌握余角的定义.余角:如果两个角相加等于90°,那么这两个角互为余角.
9、D
【分析】
根据平行线的判定与性质、对顶角相等逐项判断即可.
【详解】
解:∵∠1=∠2,
∴AB∥CD,故A正确,不符合题意;
∴∠4=∠5,故C正确,不符合题意;
∵∠EFB与∠3是对顶角,
∴∠EFB=∠3,故B正确,
无法判断∠3=∠5,故D错误,符合题意,
故选:D.
【点睛】
本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.
10、D
【分析】
直接利用对顶角以及平行线的性质分析得出答案.
【详解】
解:
∵∠1=70°,
∴∠1=∠3=70°,
∵ABDC,
∴∠2+∠3=180°,
∴∠2=180°−70°=110°.
故答案为:D.
【点睛】
此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.
二、填空题
1、60
【分析】
根据角平分线的定义得出∠AOE=∠COE,∠COE=∠BOC,求出∠AOE=∠COE=∠BOC,根据∠AOE+∠COE+∠BOC=180°,求出∠BOC,再根据对顶角相等求出答案即可.
【详解】
解:∵OE是∠AOC的平分线,OC恰好平分∠EOB,
∴∠AOE=∠COE,∠COE=∠BOC,
∴∠AOE=∠COE=∠BOC,
∵∠AOE+∠COE+∠BOC=180°,
∴∠BOC=60°,
∴∠AOD=∠BOC=60°,
故答案为:60.
【点睛】
本题考查了邻补角、对顶角,角平分线的性质知识点,做题的关键是掌握邻补角互补,角的平分线分成的两个角相等,对顶角相等.
2、
【分析】
根据角度的四则运算法则、余角的定义即可得.
【详解】
解:,
,
,
,
,
;
的余角是,
故答案为:,.
【点睛】
本题考查了角度的四则运算、余角,熟练掌握角度的四则运算法则和余角的定义是解题关键.
3、
【分析】
作EF∥AB,证明AB∥ EF∥CD,进而得到∠BED=∠ABE+∠CDE,根据角平分线定义得到,即可求出.
【详解】
解:如图,作EF∥AB,
∵AB∥CD,
∴AB∥ EF∥CD,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∴∠BED=∠BEF+∠DEF=∠ABE+∠CDE,
∵BE平分∠ABC,DE平分∠ADC,
∴,
∴ .
故答案为:
【点睛】
本题考查了平行线性质,角平分线的定义,熟知角平分线的性质和平行公理的推论,根据题意添加辅助线是解题关键.
4、
【分析】
根据互为余角的两角之和为90°,即可得出答案.
【详解】
解:=65°14'15″,
的余角=90°﹣65°14'15″=24°45'45″.
故答案为:24°45'45″.
【点睛】
本题主要是考查了余角的定义以及角度的运算,熟记互余的两个角之和为90°,是解决本题的关键.
5、
【分析】
先求出的度数,再根据角平分线的运算可得的度数,然后根据角的和差即可得.
【详解】
解:,
,
是的平分线,
,
,
故答案为:.
【点睛】
本题考查了邻补角、与角平分线有关的计算,熟记角的运算法则是解题关键.
三、解答题
1、(1);(2)∠ABC的度数改变,度数为.
【解析】
【分析】
(1)过点E作,根据平行线性质推出∠ABE=∠BEF,∠CDE=∠DEF,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数;
(2)过点E作,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数.
【详解】
(1)如图1,过点作.
∵,
∴,
∴.
∵平分平分,,
∴.
∵,
∴,
∴.
(2)的度数改变.
画出的图形如图2,过点作.
∵平分,平分,,
∴ .
∵,
∴,
∴.
∵,
∴,
∴,
∴.
【点睛】
本题考查了平行线性质和角平分线定义的应用,主要考查学生的推理能力.熟练掌握平行线的判定与性质是解答本题的关键.
2、
【解析】
【分析】
先根据平角的定义和可得,再根据角平分线的定义可得,然后根据对顶角相等即可得.
【详解】
解:,
,
平分,
,
由对顶角相等得:.
【点睛】
本题考查了对顶角相等、角平分线的定义等知识点,熟练掌握角平分线的定义是解题关键.
3、(1),;(2).
【解析】
【分析】
(1)先根据垂直可得,再根据角的和差即可得;
(2)根据(1)的结论即可得出答案.
【详解】
解:(1),
,
,
,
即图中有关角的等量关系有,;
(2)由(1)已得:,
,
.
【点睛】
本题考查了垂直、角的和差,熟练掌握两条直线互相垂直,则四个角为直角是解题关键.
4、GD;AC;同位角相等,两直线平行;;两直线平行,内错角相等;;AD;EF;同旁内角互补,两直线平行;两直线平行,同位角相等;AD;BC
【解析】
【分析】
结合图形,根据平行线的判定和性质逐一进行填空即可.
【详解】
解:,已知
,同位角相等,两直线平行
两直线平行,内错角相等
又,(已知)
(等量代换)
,同旁内角互补,两直线平行)
(两直线平行,同位角相等)
,(已知)
,
,
.
【点睛】
本题主要考查了平行线的判定和性质,垂线的定义,解答此题的关键是注意平行线的性质和判定定理的综合运用.
5、内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.
【解析】
【分析】
根据平行线的性质与判定条件完成证明过程即可.
【详解】
证明:∵∠DAF=∠F(已知).
∴AD∥BF(内错角相等,两直线平行),
∴∠D=∠DCF(两直线平行,内错角相等).
∵∠B=∠D(已知),
∴∠B=∠DCF(等量代换),
∴AB∥DC(同位角相等,两直线平行).
故答案为:内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.
【点睛】
本题主要考查了平行线的性质与判定,熟知平行线的性质与判定条件是解题的关键.
北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题: 这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题,共21页。试卷主要包含了一个角的补角比这个角的余角大.,如图,直线AB,下列说法中正确的是,若∠α=55°,则∠α的余角是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练: 这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练,共18页。试卷主要包含了下列说法中正确的是,如图,能判定AB∥CD的条件是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后测评: 这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后测评,共18页。试卷主要包含了若∠α=55°,则∠α的余角是,下列语句中叙述正确的有,下列说法中,真命题的个数为,命题等内容,欢迎下载使用。