![2022年最新京改版七年级数学下册第七章观察、猜想与证明专题测评试题(精选)01](http://img-preview.51jiaoxi.com/2/3/12696255/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新京改版七年级数学下册第七章观察、猜想与证明专题测评试题(精选)02](http://img-preview.51jiaoxi.com/2/3/12696255/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新京改版七年级数学下册第七章观察、猜想与证明专题测评试题(精选)03](http://img-preview.51jiaoxi.com/2/3/12696255/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版七年级下册第七章 观察、猜想与证明综合与测试测试题
展开京改版七年级数学下册第七章观察、猜想与证明专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、对于命题“如果,那么.”能说明它是假命题的反例是( )
A. B.,
C., D.,
2、下列命题中,为真命题的是( )
A.若,则 B.若,则
C.同位角相等 D.对顶角相等
3、下列命题中,真命题是( )
A.两条直线被第三条直线所截,内错角相等 B.相等的角是对顶角
C.在同一平面内,垂直于同一条直线的两条直线平行 D.同旁内角互补
4、下列语句中,是命题的是( )
①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.
A.①④⑤ B.①②④ C.①③④ D.②③④⑤
5、如图,下列条件能判断直线l1//l2的有( )
①;②;③;④;⑤
A.1个 B.2个 C.3个 D.4个
6、如果一个角的补角是这个角的4倍,那么这个角为( )
A.36° B.30° C.144° D.150°
7、如图,∠1=∠2,∠3=25°,则∠4等于( )
A.165° B.155° C.145° D.135°
8、已知∠A=37°,则∠A的补角等于( )
A.53° B.37° C.63° D.143°
9、已知∠1与∠2互为补角,且∠1>∠2,则∠2的余角是( )
A.∠1 B. C.∠2 D.
10、将一副三角板按如图所示位置摆放,已知∠α=30°14′,则∠β的度数为( )
A.75°14′ B.59°86′ C.59°46′ D.14°46′
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图将一条两边互相平行的纸带按如图折叠,若∠EFG+∠EGD=150°,则∠EGD=_____
2、如图,过直线AB上一点O作射线OC、OD ,并且OD是∠ AOC的平分线,∠BOC=29°18′, 则∠BOD的度数为___________.
3、如图,直线AB和直线CD相交于点O,且∠AOC=2∠BOC,则∠AOD的度数为____________.
4、已知∠A的补角是142°,则∠A的余角的度数是___________.
5、如图,E在AD的延长线上,下列四个条件:①∠3=∠4;②∠C+∠ABC=180°;③∠A=∠CDE;④∠1=∠2,其中能判定AB∥CD的是________.(填序号)
三、解答题(5小题,每小题10分,共计50分)
1、如图①.点O为直线AB上一点,过点O作射线OC,使,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图①中的三角板绕点O逆时针方向旋转至图②,使一边OM在∠BOC的内部,恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由:
(2)将图中的三角板绕点O逆时针方向旋转x°,旋转一周为止,在旋转的过程中,直线ON恰好平分∠AOC,则x的值为______.
(3)将图①中的三角板绕点O按顺时针方向旋转至图③的位置,使ON在∠AOC的内部,则∠AOM与∠NOC之间的数量关系为______.
2、任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类.
3、如图所示,M、N是直线AB上两点,∠1=∠2,问∠1与∠2,∠3与∠4是对顶角吗? ∠1与∠5,∠3与∠6是邻补角吗?
4、如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数
5、如图,已知,平分,平分,求证.
证明:∵平分(已知),
∴ ( ),
同理 ,
∴ ,
又∵(已知)
∴ ( ),
∴.
---------参考答案-----------
一、单选题
1、A
【分析】
根据假命题的概念、角的计算解答.
【详解】
解:当时,,但,
命题“如果,那么”是假命题,
故选:A.
【点睛】
本题考查的是命题的真假判断,解题的关键是掌握正确的命题叫真命题,错误的命题叫做假命题,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
2、D
【分析】
利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.
【详解】
解:A、若,则或,故A错误.
B、当时,有,故B错误.
C、两直线平行,同位角相等,故C错误.
D、对顶角相等,D正确.
故选:D .
【点睛】
本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.
3、C
【分析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
解:A、错误,当被截的直线平行时形成的同位角才相等;
B、错误,对顶角相等但相等的角不一定是对顶角;
C、正确,必须强调在同一平面内;
D、错误,两直线平行同旁内角才互补.
故选:C.
【点睛】
主要考查命题的真假判断与平行线的性质、对顶角的特点,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
4、A
【分析】
根据命题的定义分别进行判断即可.
【详解】
解:①若∠1=60°,∠2=60°,则∠1=∠2,是命题,符合题意;
②同位角相等吗?是疑问句,不是命题,不符合题意;
③画线段AB=CD,没有对事情作出判断,不是命题,不符合题意;
④如果a>b,b>c,那么a>c,是命题,符合题意;
⑤直角都相等,是命题,符合题意,
命题有①④⑤.
故选:A.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
5、D
【分析】
根据平行线的判定定理进行依次判断即可.
【详解】
①∵∠1,∠3互为内错角,∠1=∠3,∴;
②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;
③∠4,∠5互为同位角,∠4=∠5,∴;
④∠2,∠3没有位置关系,故不能证明 ,
⑤,,
∴∠1=∠3,
∴,
故选D.
【点睛】
此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.
6、A
【分析】
设这个角为 ,则它的补角为 ,根据“一个角的补角是这个角的4倍”,列出方程,即可求解.
【详解】
解:设这个角为 ,则它的补角为 ,根据题意得:
,
解得: .
故选:A
【点睛】
本题主要考查了补角的性质,一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.
7、B
【分析】
设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.
【详解】
解:设∠4的补角为,如下图所示:
∠1=∠2,
,
,
.
故选:B.
【点睛】
本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.
8、D
【分析】
根据补角的定义:如果两个角的度数和为180度,那么这两个角互为补角,进行求解即可.
【详解】
解:∵∠A=37°,
∴∠A的补角的度数为180°-∠A=143°,
故选D.
【点睛】
本题主要考查了求一个角的补角,熟知补角的定义是解题的关键.
9、B
【分析】
由已知可得∠2<90°,设∠2的余角是∠3,则∠3=90°﹣∠2,∠3=∠1﹣90°,可求∠3=,∠3即为所求.
【详解】
解:∵∠1与∠2互为补角,
∴∠1+∠2=180°,
∵∠1>∠2,
∴∠2<90°,
设∠2的余角是∠3,
∴∠3=90°﹣∠2,
∴∠3=∠1﹣90°,
∴∠1﹣∠2=2∠3,
∴∠3=,
∴∠2的余角为,
故选B.
【点睛】
本题主要考查了与余角补角相关的计算,解题的关键在于能够熟练掌握余角和补角的定义.
10、C
【分析】
观察图形可知,∠β=180°-90°-∠α,代入数据计算即可求解.
【详解】
解:∠β=180°﹣90°﹣∠α
=90°﹣30°14′
=59°46′.
故选:C.
【点睛】
本题考查了余角和补角,准确识图,得到∠β=180°-90°-∠α是解题的关键.
二、填空题
1、
【分析】
先根据平行线的性质得到,结合已知∠EFG+∠EGD=150°,解得∠EGD=,再根据折叠的性质解得,结合两直线平行,同旁内角互补得到,据此整理得,进而解题.
【详解】
解:
∠EFG+∠EGD=150°,
∠EGD=
折叠
故答案为:.
【点睛】
本题考查折叠的性质、平行线的性质等知识,两直线平行,同旁内角互补,掌握相关知识是解题关键.
2、
【分析】
先求出的度数,再根据角平分线的运算可得的度数,然后根据角的和差即可得.
【详解】
解:,
,
是的平分线,
,
,
故答案为:.
【点睛】
本题考查了邻补角、与角平分线有关的计算,熟记角的运算法则是解题关键.
3、
【分析】
根据,可得,再根据对顶角相等即可求出的度数.
【详解】
解:∵,
∴
∴
∵
∴
故答案为:
【点睛】
本题主要考查了邻补角、对顶角的相关知识,熟练运用邻补角、对顶角的相关知识是解答此题的关键.
4、52°度
【分析】
两角互补和为180°,两角互余和为90°,先求出∠A,再用90°-∠A即可解出本题.
【详解】
解:∵∠A的补角为142°,
∴∠A=180°-142°=38°,
∴∠A的余角为90°-∠A=90°-38°=52°.
故答案为:52°.
【点睛】
本题考查了余角和补角,解题的关键是熟悉两角互余和为90°,互补和为180°.
5、②③④
【分析】
根据平行线的判定定理,逐一判断,即可得到答案.
【详解】
∵,
∴,
∴①不符合题意;
∵∠C+∠ABC=180°,
∴AB∥CD;
∴②符合题意;
∵∠A=∠CDE,
∴AB∥CD;
∴③符合题意;
∵∠1=∠2,
∴AB∥CD.
故答案为:②③④.
【点睛】
本题主要考查平行线的判定定理,掌握平行线的判定定理是解题的关键.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
三、解答题
1、(1)直线ON平分∠AOC.理由见解析;(2)60或240;(3)∠AOM﹣∠NOC=30°
【解析】
【分析】
(1)由角的平分线的定义和等角的余角相等求解;
(2)由∠BOC=120°可得∠AOC=60°,则∠BON=30°,即旋转60°或240°时ON平分∠AOC,据此求解;
(3)因为∠MON=90°,∠AOC=60°,所以∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,然后作差即可.
【详解】
解:(1)直线ON平分∠AOC.理由:
设ON的反向延长线为OD,
∵OM平分∠BOC,
∴∠MOC=∠MOB,
又∵OM⊥ON,
∴∠MOD=∠MON=90°,
∴∠COD=∠BON,
又∵∠AOD=∠BON(对顶角相等),
∴∠COD=∠AOD,
∴OD平分∠AOC,
即直线ON平分∠AOC.
(2)∵∠BOC=120°
∴∠AOC=60°,
∴∠BON=∠DOA=30°,
即旋转60°或240°时直线ON平分∠AOC,
由题意得,即x=60或240,
故答案为60或240;
(3)∵∠MON=90°,∠AOC=60°,
∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,
∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.
故答案为:∠AOM﹣∠NOC=30°
【点睛】
此题考查了角平分线的定义和角的和差等知识,应该认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键.
2、共组成6对角,位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线,具体分类见解析
【解析】
【分析】
根据题意画出图形,然后结合题意可进行求解.
【详解】
解:如图,
由图可知两条相交的直线,两两相配共组成6对角,
位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线,
这6对角中有:4对邻补角(即为∠AOD与∠AOC,∠AOD与∠BOD,∠BOD与∠BOC,∠BOC与∠AOC),
2对对顶角(即为∠AOD与∠BOC,∠BOD与∠AOC).
【点睛】
本题主要考查对顶角及邻补角的概念,熟练掌握对顶角及邻补角的概念是解题的关键.
3、∠1和∠2,∠3和∠4都不是对顶角,∠1与∠5,∠3与∠6也都不是邻补角
【解析】
【分析】
根据对顶角和邻补角的定义求解即可.
【详解】
解:根据对顶角的定义可得:∠1和∠2,∠3和∠4都不是对顶角;
根据邻补角的定义可得,∠1与∠5,∠3与∠6也都不是邻补角.
【点睛】
此题考查了邻补角和对顶角的定义,解题的关键是掌握邻补角和对顶角的有关定义,牢记两条直线相交,才能产生对顶角或邻补角.两个角有公共点顶点,且角的一边重合、另一条边互为反向延长线,这样的两个角叫做邻补角,对顶角是指角的顶点重合,角的两条边分别互为反向延长线的角。
4、∠2=115°,∠3=65°,∠4=115°
【解析】
【分析】
根据对顶角相等和邻补角定义可求出各个角.
【详解】
解:∵∠1=65°,∠1=∠3,
∴∠3=65°,
∵∠1=65°,∠1+∠2=180°,
∴∠2=180°-65°=115°,
又∵∠2=∠4,
∴∠4=115°.
【点睛】
本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.
5、∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补
【解析】
【分析】
由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.
【详解】
证明:∵BE平分∠ABC(已知),
∴∠2=∠ABC(角平分线的定义),
同理∠1=∠BCD,
∴∠1+∠2=(∠ABC+∠BCD),
又∵AB∥CD(已知)
∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补 ),
∴∠1+∠2=90°.
故答案为:∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.
初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试测试题: 这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试测试题,共19页。试卷主要包含了下列说法正确的个数是,如图,下列命题是真命题的是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时作业: 这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时作业,共23页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练: 这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练,共20页。试卷主要包含了下列说法中,假命题的个数为,下列命题中,为真命题的是,若的补角是125°,则的余角是等内容,欢迎下载使用。