北京课改版七年级下册第九章 数据的收集与表示综合与测试当堂检测题
展开这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试当堂检测题,共16页。
京改版七年级数学下册第九章数据的收集与表示综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知一组数据3,7,5,3,2,这组数据的众数为( )
A.2 B.3 C.4 D.5
2、下列调查中,最适合采用全面调查(普查)方式的是( )
A.对兰州市初中生每天阅读时间的调查 B.对市场上大米质量情况的调查
C.对华为某批次手机防水功能的调查 D.对某班学生肺活量情况的调查
3、下面调查中,最适合采用全面调查的是( )
A.对全国中学生视力状况的调查 B.了解重庆市八年级学生身高情况
C.调查人们垃圾分类的意识 D.对“天舟三号”货运飞船零部件的调查
4、某县为了传承中华优秀传统文化,组织了一次全县600名学生参加的“中华经典诵读”大赛.为了解本次大赛的选手成绩,随机抽取了其中50名选手的成绩进行统计分析.在这个问题中,下列说法中正确的是( )
A.这600名学生的“中华经典诵读”大赛成绩的全体是总体
B.50名学生是总体的一个样本
C.每个学生是个体
D.样本容量是50名
5、如果一组数据的平均数是5,则a的值( )
A.8 B.5 C.4 D.2
6、某校有11名同学参加某比赛,预赛成绩各不同,要取前6名参加决赛,小敏己经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这11名同学成绩的( )
A.最高分 B.中位数 C.极差 D.平均分
7、5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是( )
A.7 B.8 C.9 D.10
8、下列调查中,适合采用全面调查的是( )
A.了解一批电灯泡的使用寿命 B.调查榆林市中学生的视力情况
C.了解榆林市居民节约用水的情况 D.调查“天问一号”火星探测器零部件的的质量
9、某校人工智能科普社团有12名成员,成员的年龄情况统计如下:
年龄(岁) | 12 | 13 | 14 | 15 | 16 |
人数(人) | 1 | 4 | 3 | 2 | 2 |
则这12名成员的平均年龄是( )
A.13岁 B.14岁 C.15岁 D.16岁
10、下列问题不适合用全面调查的是( )
A.旅客上飞机前的安检 B.企业招聘,对应试人员进行面试
C.了解全班同学每周体育锻炼的时间 D.调查市场上某种食品的色素含量是否符合国家标准
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、、、三种糖果售价分别为每千克10元,11元,14元.若将种糖果3kg,种糖果2kg,种糖果1kg混在一起,则售价应定为每千克______元.
2、如图所示是小明一天24小时的作息时间分配的扇形统计图,那么他的阅读时间是________小时.
3、某单位拟招聘一个管理员,其中某位考生笔试、试讲、面试三轮测试得分分别为92分,85分,90分,若依次按40%,40%,20%的比例确定综合成绩,则该名考生的综合成绩为______分.
4、数据1,2,4,5,2的众数是 _____.
5、数据92、96、98、100、x的众数是96,则其中位数和平均数分别是______和______.
三、解答题(5小题,每小题10分,共计50分)
1、某班10名男同学参加100米达标检测,15秒以下达标(包括15秒),这10名男同学成绩记录如下:+1.2,0,-0.8,+2,0,-1.4,-0.5,0,-0.3,+0.8 (其中超过15秒记为“+”,不足15秒记为“-”)
(1)求这10名男同学的达标率是多少?
(2)这10名男同学的平均成绩是多少?
(3)最快的比最慢的快了多少秒?
2、某中学为选拔一名选手参加我市“学宪法 讲宪法”主题演讲比赛,经研究,按表所示的项目和权数对选拔赛参赛选手进行考评.下图分别是是小明、小华在选拔赛中的得分表和各项权数分布表:
得分表
项目 选手 | 服装 | 普通话 | 主题 | 演讲技巧 |
小明 | 85分 | 70分 | 80分 | 85分 |
小华 | 90分 | 75分 | 75分 | 80分 |
结合以上信息,回答下列问题:
(1)小明在选拔赛中四个项目所得分数的众数是 ,中位数是 ;
(2)评分时按统计表中各项权数考评.
①求出演讲技巧项目对应扇形的圆心角的大小.
②如此考评,小明和小华谁更优秀,派出哪位同学代表学校参加比赛呢?
3、某音像制品店某一天的销售的情况如图:
(1)从条形统计图看,民歌类唱片与流行歌曲唱片销售量之比大约是多少?从扇形统计图看呢?
(2)要使读者清楚地看出各类音像制品的销售量之比,条形统计图应做怎样的改动?
4、14,5,10,3,6的中位数是什么?
5、菲尔兹奖是数学领域的一项国际大奖,每四年颁发一次.从1936年到2010年,共有53人获奖,获奖者获奖时的年龄分布如下,请计算获奖者的平均获奖年龄.(结果精确到0.1岁)
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
根据众数的定义(一组数据中,出现次数最多的数据,叫这组数据的众数)即可求出这组数据的众数.
【详解】
解:在这组数据中3出现了2次,出现的次数最多,则这组数据的众数是3;
故选:B.
【点睛】
此题考查了众数的定义;熟记众数的定义是解决问题的关键.
2、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
解:A、对兰州市初中生每天阅读时间的调查,工作量大,不易普查;
B、对市场上大米质量情况的调查,调查具有破坏性,不易普查;
C、对华为某批次手机防水功能的调查,调查具有破坏性,不易普查;
D、对某班学生肺活量情况的调查,人数较少,适合普查;
故选:D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、D
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.
【详解】
解:.对全国中学生视力状况的调查,适合抽样调查,故本选项不合题意;
.了解重庆市八年级学生身高情况,适合抽样调查,故本选项不合题意;
.调查人们垃圾分类的意识,适合抽样调查,故本选项不合题意;
.对“天舟三号”货运飞船零部件的调查,适合普查,故本选项符合题意.
故选:D.
【点睛】
本题考查了抽样调查和全面调查的区别,解题的关键是掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4、A
【解析】
【分析】
根据总体的定义:表示考察的全体对象;样本的定义:按照一定的抽样规则从总体中取出的一部分个体,样本中个体的数目称为样本容量;个体的定义:总体中每个成员成为个体,进行逐一判断即可.
【详解】
解:A、这600名学生的“中华经典诵读”大赛成绩的全体是总体,故本选项正确,符合题意;
B、50名学生的成绩是总体的一个样本,故本选项错误,不符合题意;
C、每个学生的成绩是个体,故本选项错误,不符合题意;
D、样本容量是50,故本选项错误,不符合题意;
故选A.
【点睛】
本题主要考查了样本,总体,个体和样本容量的定义,解题的关键在于熟知相关定义.
5、A
【解析】
【分析】
根据平均数的计算公式计算即可;
【详解】
∵数据的平均数是5,
∴,
∴;
故选A.
【点睛】
本题主要考查了平均数的计算,准确计算是解题的关键.
6、B
【解析】
【分析】
由于共有11名同学参加某比赛,比赛取前6名参加决赛,根据中位数的意义分析即可.
【详解】
解:由于共有11个不同的成绩按从小到大排序后,中位数及中位数之后的共有6个数,
故只要知道自己的成绩和中位数就可以知道是否进入决赛了.
故选:B.
【点睛】
本题考查了中位数意义,解题的关键是正确掌握中位数的意义.
7、C
【解析】
【分析】
设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.
【详解】
解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,
所以有x﹣12+x=2×3,
解得x=9.
故选:C.
【点睛】
此题考查了平均数和一元一次方程的应用,解题的关键是正确分析题目中的等量关系列方程求解.
8、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析即可.
【详解】
解:A.了解一批电灯泡的使用寿命,具有破坏性,适合抽样调查,不符合题意;
B.调查榆林市中学生的视力情况,适合抽样调查,不符合题意;
C.了解榆林市居民节约用水的情况,适合抽样调查,不符合题意;
D.调查“天问一号”火星探测器零部件的的质量,必需采用全面调查,符合题意;
故选:D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
9、B
【解析】
【分析】
根据平均数公式计算.
【详解】
解: (岁),
故选:B.
【点睛】
此题考查平均数的计算公式,熟记计算公式是解题的关键.
10、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据以上逐项分析可知.
【详解】
解:A. 旅客上飞机前的安检,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,
B. 企业招聘,对应试人员进行面试,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,
C. 了解全班同学每周体育锻炼的时间,人员不多,适合全面调查,不符合题意,
D. 调查市场上某种食品的色素含量是否符合国家标准,调查具有破坏性,不适合全面调查,符合题意
故选D
【点睛】
本题考查的是全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.理解全面调查与抽样调查的适用范围是解题的关键.
二、填空题
1、11
【解析】
【分析】
根据加权平均数的计算方法是求出所有糖果的总钱数,然后除以糖果的总质量.
【详解】
解:售价应定为每千克(元.
故答案为:11.
【点睛】
本题考查的是加权平均数的求法,本题易出现的错误是对加权平均数的理解不正确,而求10、11、14这三个数的平均数.
2、1
【解析】
【分析】
先求“阅读”所占的圆心角,再用×24,即可得出结果.
【详解】
解:360o-(60o+30o+120o+135o)=15o,
×24=1(小时),
故答案为:1.
【点睛】
本题考查了扇形统计图的应用,能够求出“阅读”所占的圆心角是解决本题的关键.
3、88.8
【解析】
【分析】
根据加权平均数的求解方法求解即可.
【详解】
解:根据题意,该名考生的综合成绩为92×40%+85×40%+90×20%=88,8(分),
故答案为:88.8.
【点睛】
本题考查加权平均数,熟知加权平均数的求解方法是解答的关键.
4、2
【解析】
【分析】
找出出现次数最多的数是众数.
【详解】
解:数据1,2,4,5,2中,2出现的次数最多,是2次,因此众数是2.
故答案为:2.
【点睛】
本题考查众数的意义及求法,在一组数据中出现次数最多的数是众数.
5、 96 96.4
【解析】
【分析】
先根据众数的定义:一组数据中出现次数最多的数,求出x的值,然后求解平均数和中位数的定义进行求解即可.
【详解】
解:∵数据92、96、98、100、x的众数是96,
∴,
把这组数据从小到大排列为:92,96,96,98,100,
∴处在最中间的数是96,
∴中位数为96,
故答案为:96,96.4.
【点睛】
本题主要考查了平均数,中位数和众数,解题的关键在于能够熟练掌握相关定义;中位数的定义:一组数据中按照从小到大或从大到小顺序排列处在最中间的数或处在最中间的两个数的平均数;平均数的定义:一组数据的数据之和除以数据个数.
三、解答题
1、(1)70%;(2)15.1秒;(3)最快的比最慢的快了3.4秒
【解析】
【分析】
(1)求这10名男同学的达标人数除以总人数即可求解;
(2)根据10名男同学的成绩即可求出平均数;
(3)分别求出最快与最慢的时间,故可求解.
【详解】
解(1)从记录数据可知达标人数是7
∴ 达标率=7÷10×100%=70%
(2)15+(+1.2+0-0.8+2+0-1.4-0.5+0-0.3+0.8 )÷10=15.1(秒)
∴这10名男同学的平均成绩是15.1秒
(3)最快的是(15-1.4)=13.6(秒)最慢的是(15+2)=17(秒)
17-13.6=3.4(秒)
∴最快的比最慢的快了3.4秒.
【点睛】
此题主要考查有理数的混合运算的实际应用,解题的关键是熟知有理数的运算法则.
2、(1)85分,82.5分;(2)①144°;②小明更优秀,应派出小明代表学校参加比赛
【解析】
【分析】
(1)根据众数和中位数的定义求解即可;
(2)①根据扇形统计图中的数据,可以得到演讲技巧项目的百分比,进而求出圆心角大小;②根据加权平均数的定义列式计算出小明、小华的成绩,从而得出答案.
【详解】
解:(1)小明在选拔赛中四个项目所得分数的众数是85分,中位数是=82.5(分);
(2)①1-5%-15%-40%=40%
36040%=144°
答:演讲技巧项目对应扇形的圆心角为144°;
②小明分数为:
小华分数为:
80.75>77.75
∴小明更优秀,应派出小明代表学校参加比赛
【点睛】
本题考查了众数、中位数、加权平均数,解题的关键是掌握众数、中位数、加权平均数的定义.
3、(1)从条形统计图直观地看,民歌类唱片与流行歌曲唱片销售量之比约为2:3;从扇形统计图看,它们的比为;(2)应将0作为纵轴上销售量的起始值.
【解析】
【分析】
(1)用民歌类唱片销售量除以流行歌曲唱片销售量即可.
(2)根据条形统计图的特点回答即可.
【详解】
解:(1)从条形统计图看,
民歌类唱片销售量为:80(张),
流行歌曲唱片销售量为:120(张),
∴民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;
从扇形统计图看,民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;
(2)要使读者清楚地看出各类音像制品的销售量之比,应将0作为纵轴上销售量的起始值.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
4、6
【解析】
【分析】
把这组数据按从小到大的顺序排列,位于最中间的一个数为中位数.
【详解】
解:将这组数据从小到大排列为:3,5,6,10,14,处在中间位置的数为6,因此中位数是6,
答:14,5,10,3,6的中位数是6.
【点睛】
本题属于基础题,考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而做错,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
5、35.6岁
【解析】
【分析】
将所有人的年龄加起来除以总人数即可.
【详解】
解:
(岁).
【点睛】
本题考查了求一组数据的平均数,熟知平均数的计算方法是解本题的关键.
相关试卷
这是一份初中数学第九章 数据的收集与表示综合与测试单元测试随堂练习题,共16页。试卷主要包含了下列做法正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试同步达标检测题,共17页。试卷主要包含了一组数据中的中位数,有一组数据等内容,欢迎下载使用。
这是一份2021学年第九章 数据的收集与表示综合与测试巩固练习,共19页。试卷主要包含了有一组数据,某中学七,某教室9天的最高室温统计如下等内容,欢迎下载使用。