初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试精练
展开
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试精练,共20页。
京改版七年级数学下册第九章数据的收集与表示必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列调查中,调查方式选择不合理的是( )A.为了了解新型炮弹的杀伤半径,选择抽样调查B.为了了解某河流的水质情况,选择普查C.为了了解神舟飞船的设备零件的质量情况,选择普查D.为了了解一批袋装食品是否含有防腐剂,选择抽样调查2、山西被誉为“表里山河”,意思是:外有大河,内有高山.下表是我省11个地市最高峰高度的统计结果,其中最高峰高度的中位数是( )城市太原大同阳泉长治晋城临汾运城吕梁晋中忻州朔州最高峰高度(米)278924201874252323582504.3235828312566.63061.12333A.2420米 B.2333米 C.2504.3米 D.2566.6米3、下列调查中最适合采用全面调查的是( )A.调查甘肃人民春节期间的出行方式 B.调查市场上纯净水的质量C.调查我市中小学生垃圾分类的意识 D.调查某航班上的乘客是否都持有“绿色健康码”4、在共有人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名.只需要了解自己的成绩以及全部成绩的( )A.平均数 B.众数 C.中位数 D.最高分与最低分的差5、下列调查中,最适合采用全面调查的是( )A.疫情防控阶段进出某小区人员的体温检测 B.调查湖北省七年级学生的身高C.检测一批手持测温仪的使用寿命 D.端午节期间市场上粽子质量6、下列调查中,最适合采用抽样调查的是( )A.调查一批防疫口罩的质量B.调查某校九年级学生的视力C.对乘坐某班次飞机的乘客进行安检D.国务院于2020年11月1日开展的第七次全国人口调查7、某市今年共有7万名考生参加中考,为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析.以下说法正确的有( )个.①这种调查采用了抽样调查的方式,②7万名考生是总体,③1000名考生是总体的一个样本,④每名考生的数学成绩是个体.A.2 B.3 C.4 D.08、5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是( )A.7 B.8 C.9 D.109、某班学生在颁奖大会上得知该班获得奖励的情况如下表:项目人数级别三好学生优秀学生干部优秀团员市级111区级322校级17512已知该班共有27人获得奖励(每位同学均可获得不同级别、不同类别多项奖励),其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( )A.3项 B.4项 C.5项 D.6项10、某校男子足球队的年龄分布如图条形图所示,则这些队员年龄的众数是( )A.8 B.13 C.14 D.15第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、2021年徐州某一周各日的空气污染指数为127,98,78,85,95,191,70,这组数据的中位数是______.2、一组数据25,29,20,x,14,它的中位数是23,则这组数据的平均数为______.3、一组数据6、8、10、10,数据的众数是 ___,中位数是 ___.4、数据8、9、8、10、8、8、10、7、9、8的中位数是________,众数是__________.5、小玲家的鱼塘里养了2 500条鲢鱼,按经验,鲢鱼的成活率约为80%.现准备打捞出售,为了估计鱼塘中鲢鱼的总质量,从鱼塘中捕捞了3次进行统计,得到的数据如下表: 鱼的条数平均每条鱼的质量第一次捕捞20第二次捕捞10第三次捕捞10那么,鱼塘中鲢鱼的总质量约是________kg.三、解答题(5小题,每小题10分,共计50分)1、某校开设了丰富多彩的实践类拓展课程,分别设置了体育类、艺术类、文学类及其它类课程(要求人人参与,每人只能选择一门课程).为了解学生喜爱的拓展类别,学校做了一次抽样调查.根据收集到的数据绘制成以下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)直接在图①中补全条形统计图;(2)图②中其它类课程所对应扇形的圆心角是 度(直接填空);(3)若该校有1500名学生,请估计喜欢文学类课程的学生有多少人?2、两个人群A,B的年龄(单位;岁)如下:A:13,13,14,15,15,15,15,16,17,17;B:3,4,4,5,5,6,6,6,54,57.(1)人群A年龄的平均数、中位数和众数分别是多少?你认为用哪个数据可以较好地描述该人群年龄的集中趋势?(2)人群B年龄的平均数、中位数和众数分别是多少?你认为用哪个数据可以较好地描述该人群年龄的集中趋势?3、某校举办弘扬中华传统知识演讲比赛,八(1)班计划从甲、乙两位同学中选出一位参加学校的决赛,已知这两位同学在预赛中各项成绩如表图:(1)表中a的值为_________;b的值为_________.(2)把图中的统计图补充完整;(3)若演讲内容、语言表达、形象风度、现场效果四项得分按30%、50%、10%、10%的权重比例计算两人的最终得分,并选择最终得分较高的同学作为代表参赛,那么谁将代表八(1)班参赛?请说明理由.项目甲的成绩(分)乙的成绩(分)演讲内容9590语言表达9085形象风度85b现场效果9095平均分a904、某次体操比赛,六位评委对某位选手的打分(单位:分)如下:9.5,9.3,9.1,9.5,9.4,9.3(1)求这六个分数的平均分;(2)如果规定:去掉一个最高分和一个最低分,余下分数的平均值作为这位选手的最后得分,那么该选手的最后得分是多少?5、某校开展了一次数学竞赛(竞赛成绩为百分制),并随机抽取了50名学生的竞赛成绩(本次竞赛没有满分),经过整理数据得到以下信息:信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含前端点值,不含后端点值).信息二:第三组的成绩(单位:分)为:76 76 76 73 72 75 74 71 73 74 78 76根据信息解答下列问题:(1)补全第二组频数分布直方图(直接在图中补全);(2)第三组竞赛成绩的众数是 分,抽取的50名学生竞赛成绩的中位数是 分;(3)若该校共有2000名学生参赛,请估计该校参赛学生成绩不低于80分的人数. ---------参考答案-----------一、单选题1、B【解析】【分析】根据调查的不同目的来选择全面调查或抽样调查,再判断四个选项即可.【详解】解:A选项,C选项,D选项选择调查方式合理,故A选项,C选项,D选项不符合题意.B选项,为了了解某河流的水质情况,选择普查耗费人力,物力和时间较多,而选择抽样调查更加节约,且和普查的结果相差不大,故B选项符合题意.故选:B.【点睛】本题考查全面调查和抽样调查,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.2、C【解析】【分析】根据中位数的定义求解即可,中位数是将一组数据从小到大重新排列后,最中间的那个数(或最中间两个数的平均数).【详解】把这11个数从小到大排列为:1874,2333,2358,2358,2420,2504.3,2523,2566.6,2789,2831,3061.1,共有11个数,中位数是第6个数2504.3,故选:C.【点睛】此题考查了中位数,属于基础题,熟练掌握中位数的定义是解题关键.3、D【解析】【分析】根据抽样调查和全面调查的定义逐一判断即可.【详解】解|:A、调查甘肃人民春节期间的出行方式,应采用抽样调查,故不符合题意;B、调查市场上纯净水的质量,应采用抽样调查,故不符合题意;C、调查我市中小学生垃圾分类的意识,应采用抽样调查,故不符合题意;D、调查某航班上的乘客是否都持有“绿色健康码”,应采用全面调查,故符合题意;故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4、C【解析】【分析】根据题意可得:由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有15个人,第8位选手的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.5、A【解析】【分析】根据调查对象的特点,结合普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果接近准确数值,从而可得答案.【详解】解:A 疫情防控阶段进出某小区人员的体温检测,适合采用全面调查方式,故本选项符合题意;B 调查湖北省七年级学生的身高,适合采用抽样调查,故本选项不合题意;C 检测一批手持测温仪的使用寿命,适合采用抽样调查,故本选项不合题意;D 调查端午节期间市场上粽子质量,适合采用抽样调查,故本选项不合题意.故选:A.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、A【解析】【分析】根据抽样调查和普查的定义进行求解即可.【详解】解:A.调查一批防疫口罩的质量,适合抽样调查,故选项符合题意;B.调查某校九年级学生的视力,适合全面调查,故选项不符合题意;C.对乘坐某班次飞机的乘客进行安检,适合全面调查,故选项不符合题意;D.国务院于2020年11月1日开展的第七次全国人口调查,适合全面调查,故选项不符合题意;故选A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7、A【解析】【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考察的对象.从而找出总体、个体.【详解】解:①为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,这种调查采用了抽样调查的方式,故说法正确;②7万名考生的数学成绩是总体,故说法错误;③1000名考生的数学成绩是总体的一个样本,故说法错误;④每名考生的数学成绩是个体,故说法正确.综上,正确的是①④,共2个,故选:A.【点睛】本题考查的是确定总体、个体和样本.解此类题需要注意考察对象实际应是表示事物某一特征的数据,而非考察的事物.8、C【解析】【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【详解】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故选:C.【点睛】此题考查了平均数和一元一次方程的应用,解题的关键是正确分析题目中的等量关系列方程求解.9、C【解析】【分析】根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的人中的一人获奖最多,其余获奖最少,只获一项奖励,用总奖励减去各部分的奖励即可得获奖最多的人的项目个数.【详解】解:根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的人中的一人获奖最多,其余人获奖最少,只获一项奖励,则获奖最多的人获奖项目为:项.故选:C.【点睛】题目主要考查数据的整理、处理,理解题意,理清在什么情况下获奖最多是解题关键.10、C【解析】【分析】根据众数的定义:一组数据中出现次数最多的那个数,称为这组数据的众数,据此结合条形图可得答案.【详解】解:由条形统计图知14岁出现的次数最多,所以这些队员年龄的众数为14岁,故选C.【点睛】本题考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义.二、填空题1、95【解析】【分析】先将数据按从小到大排列,取中间位置的数,即为中位数.【详解】解:将这组数据从小到大排列得:70,78,85,95,98,127,191,中间位置的数为:95,所以中位数为95.故答案为:95.【点睛】本题主要是考查了中位数的定义,熟练掌握地中位数的定义,是求解该类问题的关键.2、22.2【解析】【分析】由中位数的定义“将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据”即可判断出x的值,再利用求平均数的公式求出结果即可.【详解】∵这组数据由5个数组成,为奇数个,且中位数为23,∴,∴这组数据为25,29,20,23,14,∴这组数据的平均数. 故答案为:22.2.【点睛】本题考查中位数,求平均数.掌握中位数的定义和求平均数公式是解答本题的关键.3、 10 9【解析】【分析】先把数据按由小到大的顺序排列,然后根据中位数和众数的定义求解;【详解】解:由题意可把数据按由小到大的顺序排列为6、8、10、10,所以该组数据的中位数为9,众数为10;故答案为10,9【点睛】本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4、 8 8【解析】【分析】根据中位数的定义:一组数据中处在最中间的数或处在最中间的两个数的平均数;众数的定义:一组数据中出现次数最多的数,进行求解即可.【详解】解:把这组数据从小到大排列为:7,8,8,8,8,8,9,9,10,10,∵处在最中间的两个数分别为8,8,∴中位数,∵8出现了四次,出现的次数最多,∴众数为8,故答案为:8,8.【点睛】本题主要考查了求众数和求中位数,解题的关键在于能够熟练掌握相关知识进行求解.5、3600【解析】【分析】首先计算样本平均数,然后计算成活的鱼的数量,最后两个值相乘即可.【详解】解:每条鱼的平均重量为:千克,成活的鱼的总数为:条,则总质量约是千克.故答案为:3600.【点睛】本题考查了利用样本估计总体,解题的关键是注意样本平均数的计算方法:总质量总条数,能够根据样本估算总体.三、解答题1、(1)见解析;(2)36;(3)450【解析】【分析】(1)结合两个统计图,根据体育类80人所占的百分比是40%,计算出总人数,利用总人数乘以20%求得参加艺术社团的人数,再求得参加其它社团的人数,补全条形统计图;(2)利用360°乘以参加其它类课程的所占的比例求得圆心角的度数;(3)求出文学类所占的百分比,再用1500乘以百分比估计即可.【详解】(1)调查的总人数是80÷40%=200(人),参加艺术社团的人数是200×20%=40(人),参加其它社团的人数200−80−40−60=20(人),∴补全条形统计图如下:(2)它类课程在扇形统计图中所占圆心角的度数是,故答案为:36;(3)(人),∴估计该校喜欢文学类课程的学生450人.【点睛】此题考查扇形统计图,条形统计图,解题关键在于看懂图中数据.2、(1)人群A年龄的平均数、中位数、众数分别是:15岁、15岁、15岁;平均数、中位数或众数都能较好反映该人群年龄的集中趋势;(2)人群B年龄的平均数、中位数、众数分别是:15岁、5.5岁、6岁;相对而言,中位数或众数可以较好地描述该人群年龄的集中趋势.【解析】【分析】(1)根据平均数、中位数和众数的定义,并且结合题意求解;(2)根据平均数、中位数和众数的定义,并且结合题意求解.【详解】解:(1)人群A年龄的平均数是:(13×2+14+15×4+16+17×2)÷10=15(岁),这10个数按从小到大的顺序排列为:13,13,14,15,15,15,15,16,17,17,中位数是:(15+15)÷2=15(岁),15出现了4次,次数最多,所以众数是15岁;用平均数、中位数或者众数都可以较好地描述该人群年龄的集中趋势;(2)人群B年龄的平均数是:(3+4×2+5×2+6×3+54+57)÷10=15(岁),这10个数按从小到大的顺序排列为:3,4,4,5,5,6,6,6,54,57,中位数是:(5+6)÷2=5.5(岁),6出现了3次,次数最多,所以众数是6岁;平均数受极端值的影响较大,用中位数或者众数可以较好地描述该人群年龄的集中趋势.【点睛】本题考查平均数、众数与中位数的意义,平均数是所有数据的和除以数据总数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数是指一组数据中出现次数最多的数据.3、(1)a=90 ,b=90 ;(2)见解析;(3)推荐甲同学,理由见解析【解析】【分析】(1)根据平均数的计算方法求得a、b的值;(2)由(1)求得的结果补全统计图即可;(3)四项得分按30%、50%、10%、10%的权重比例计算两人的最终得分,比较结果即可.【详解】解:(1)甲同学的成绩的平均分,乙同学的成绩的平均分:,解得:b=90;故答案为:90,90(2)由(1)求得乙同学的形象风度为90分,如图所示:(3)推荐甲同学,理由如下:由题意得,甲同学的成绩:(分)乙同学的成绩:(分)故甲同学的成绩比乙同学好,应该选甲.【点睛】本题考查的是统计表,条形统计图,平均数和加权平均数.条形统计图能清楚地表示出每个项目的数据,掌握加权平均数的计算方法是解题的关键.4、(1)这六个分数的平均分是9.35分;(2)该选手的最后得分是9.375分.【解析】【分析】平均数是指在一组数据中所有数据之和再除以数据的个数,按照游戏规则计算即可.【详解】解:(1)这六个分数的平均分是(9.5+9.3+9.1+9.5+9.4+9.3)=9.35(分);答:这六个分数的平均分是9.35分;(2)该选手的最后得分是(9.3+9.5+9.4+9.3)=9.375(分);答:该选手的最后得分是9.375分.【点睛】本题考查了算术平均数的知识,掌握算术平均数的定义是关键.5、(1)补全频数分布直方图见解析;(2)76,77;(3)该校2000名学生中成绩不低于80分的大约960人.【解析】【分析】(1)用抽取的总人数减去第一组、第三组、第四组与第五组的人数即可得第二组的人数,然后再补全频数分布直方图即可;(2)根据众数和中位数的定义求解即可;(3)样本估计总体,样本中不低于80分的占 ,进而估计1500名学生中不低于80分的人数.【详解】(1)50﹣4﹣12﹣20﹣4=10(人),补全频数分布直方图如下:(2)第三组数据中出现次数最多的是76分,共出现4次,因此众数是76分,将抽取的50名学生的成绩从小到大排列后,处在中间位置的两个数的平均数为 =77(分),因此中位数是77分,故答案为:76,77;(3)2000×=960(人),答:该校2000名学生中成绩不低于80分的大约960人.【点睛】本题考查了条形统计图的意义和制作方法,从两个统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.
相关试卷
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评,共18页。试卷主要包含了以下调查中,适宜全面调查的是,下列调查中,最适合采用全面调查,下列问题不适合用全面调查的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试同步练习题,共19页。试卷主要包含了已知一组数据,下列调查中,适合用普查方式的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试练习题,共19页。试卷主要包含了以下调查中,适宜全面调查的是,某教室9天的最高室温统计如下等内容,欢迎下载使用。