![精品解析京改版七年级数学下册第九章数据的收集与表示章节训练试题(含详细解析)01](http://img-preview.51jiaoxi.com/2/3/12693118/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析京改版七年级数学下册第九章数据的收集与表示章节训练试题(含详细解析)02](http://img-preview.51jiaoxi.com/2/3/12693118/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析京改版七年级数学下册第九章数据的收集与表示章节训练试题(含详细解析)03](http://img-preview.51jiaoxi.com/2/3/12693118/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版七年级下册第九章 数据的收集与表示综合与测试练习题
展开京改版七年级数学下册第九章数据的收集与表示章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某教室9天的最高室温统计如下:
最高室温(℃) | 30 | 31 | 32 | 33 |
天数 | 1 | 2 | 2 | 4 |
这组数据的中位数和众数分别是( )
A.31.5,33 B.32.5,33 C.33,32 D.32,33
2、小明根据演讲比赛中9位评委所给的分数制作了如下表格:
平均数 | 中位数 | 众数 | 方差 |
8.0 | 8.2 | 8.3 | 0.2 |
如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是( )
A.平均数 B.中位数 C.众数 D.方差
3、下列做法正确的是( )
A.在嫦娥五号着陆器发射前,对其零件的检测采用抽样调查
B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成扇形统计图
C.为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本
D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度
4、某次考试有3000名学生参加,为了了解3000名学生的数学成绩,从中抽取了1000名学生的数学成绩进行调查统计分析,在这个问题中,有下述4种说法:①1000名考生是总体的一个样本;②3000名考生是总体;③1000名考生数学平均成绩可估计总体数学平均成绩;④每个考生的数学成绩是个体.其中正确的说法有( )
A.0种 B.1种 C.2种 D.3种
5、下列调查活动中最适合用全面调查的是( )
A.调查某批次汽车的抗撞击能力 B.调查你所在班级学生的身高情况
C.调查全国中学生的视力情况 D.对端午节市场粽子质量进行调查
6、下列问题不适合用全面调查的是( )
A.旅客上飞机前的安检 B.企业招聘,对应试人员进行面试
C.了解全班同学每周体育锻炼的时间 D.调查市场上某种食品的色素含量是否符合国家标准
7、在共有人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名.只需要了解自己的成绩以及全部成绩的( )
A.平均数 B.众数 C.中位数 D.最高分与最低分的差
8、下列调查中,适合进行全面调查的是( )
A.《新闻联播》电视栏目的收视率
B.全国中小学生喜欢上数学课的人数
C.某班学生的身高情况
D.市场上某种食品的色素含量是否符合国家标准
9、下列调查中,适合采用全面调查的是( )
A.了解一批电灯泡的使用寿命 B.调查榆林市中学生的视力情况
C.了解榆林市居民节约用水的情况 D.调查“天问一号”火星探测器零部件的的质量
10、下列调查中,调查方式选择不合理的是( )
A.为了了解新型炮弹的杀伤半径,选择抽样调查
B.为了了解某河流的水质情况,选择普查
C.为了了解神舟飞船的设备零件的质量情况,选择普查
D.为了了解一批袋装食品是否含有防腐剂,选择抽样调查
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一组数据:1,2,4,10,a,其中整数a是这组数据的中位数,则该组数据的平均数是____.
2、一组数据:2,5,7,3,5的众数是________.
3、已知一组数据2,5,x,6的平均数是5,则这组数据的中位数是__.
4、下列调查中,调查方式选择正确的是_____.
①为了了解一批灯泡的使用寿命,选择抽样调查.②为了了解某公园全年的游客流量,选择抽样调查.③为了了解某1000枚炮弹的杀伤半径,选择全面调查.④为了了解一批袋装食品是否有防腐剂,选择全面调查.
5、一组数据:3、4、4、5、5、6、8,这组数据的中位数是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、某学校计划在八年级开设“折扇”“刺绣”“剪纸”“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图.(部分信息未给出)
请你根据以上信息解决下列问题:
(1)参加问卷调查的学生人数为 名,补全条形统计图(画图并标注相应数据);
(2)“陶艺”课程所对应的扇形圆心角的度数是多少?
(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?
2、嘉嘉和淇淇两名同学进行射箭训练,分别射箭五次,部分成绩如折线统计图所示,已知两人这五次射箭的平均成绩相同.
(1)规定射箭成绩不低于9环为“优秀”,求嘉嘉射箭成绩的优秀率.
(2)请补充完整折线统计图;
(3)设淇淇五次成绩的众数为a环,若嘉嘉补射一次后,成绩为b环,且嘉嘉六次射箭成绩的中位数恰好也是a环,求b的最大值.
3、小明所在班级学生的平均身高是1.65m,小亮所在班级学生的平均身高是1.60m,小颖说“小亮一定比小明矮”,你认为小颖的说法正确吗?说说你的理由.
4、某商场设立了一个可以自由转动的转盘(如图所示),并规定:顾客购买10元以上的商品就能获得一次转动转盘的机会,当转盘停止时,指针落在哪个区域就可以获得相应的奖品.下表所示的是活动进行中的一组数据:
转动转盘的次数 | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“牙膏”区域的次数 | 68 | 111 | 136 | 345 | 564 | 701 |
落在“牙膏”区域的频率 | 0.68 | 0.74 | 0.68 | 0.69 | 0.705 | 0.701 |
(1)请估计当m很大时,落在“牙膏”区域的频率将会接近多少?(精确到0.1)
(2)假如你去转动转盘一次,你获得洗衣液的概率大约是多少?(精确到0.1)
(3)在该转盘中,标有“牙膏”区域的扇形圆心角大约是多少度?(精确到1)
5、用直尺测量你的“拃长”,连续测量10次,计算这10次“拃长”的平均数,这样你就有了一把自己的“尺子”了,试用这把“尺子”测量课桌的长度.你还能在自己的身上找到其他的“尺子”吗?
---------参考答案-----------
一、单选题
1、D
【解析】
【分析】
根据众数和中位数的定义求解即可.
【详解】
一共有9个数据,其中位数是第5个数据,
由表可知,这组数据的中位数为32,
这组数据中数据33出现次数最多,
所以这组数据的众数为33,
故选:D.
【点睛】
本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数,将一组数据按照从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,记住这些性质是解题关键.
2、B
【解析】
【分析】
根据中位数的定义解答即可.
【详解】
解:七个分数,去掉一个最高分和一个最低分,对中位数没有影响.
故选:B.
【点睛】
本题主要考查了统计量的选择,掌握中位数的定义是解答本题的关键.
3、D
【解析】
【分析】
根据抽样调查与全面调查的概念、扇形统计图、条形统计图、折线统计图的优势,抽样调查中样本的代表性逐一判断即可.
【详解】
解:A.在嫦娥五号着陆器发射前,对其零件的检测采用全面调查,故此选项错误,不合题意;
B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成折线统计图,故此选项错误,不合题意;
C.为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本不具有代表性,故此选项错误,不合题意;
D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度,此选项正确,符合题意.
故选:D
【点睛】
本题考查了抽样调查与全面调查的特点,统计图的特点,抽样调查样本的选择等情况,熟知相关知识并根据题意灵活应用是解题关键.
4、C
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.本题总体是3000名学生的数学成绩,个体是这次考试中每名学生的数学成绩,样本是抽取的1000名学生的数学成绩,样本容量是1000.
【详解】
解:①、②两个说法指的是考生而不是考生的成绩,故①、②两个说法不对,④指的是考生的成绩,故④对.③用样本的特征估计总体的特征,是抽样调查的核心,故③对.
故选:C
【点睛】
本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.在本题中解题关键是注意总体、样本都是指考生的成绩,而不是考生.
5、B
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
解:A、调查某批次汽车的抗撞击能力,适合用抽样调查,故此选项错误;
B、调查你所在班级学生的身高情况,适合用全面调查,故此选项正确;
C、调查全国中学生的视力情况,适合用抽样调查,故此选项错误;
D、对端午节市场粽子质量进行调查,适合用抽样调查,故此选项错误.
故选:B.
【点睛】
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
6、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据以上逐项分析可知.
【详解】
解:A. 旅客上飞机前的安检,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,
B. 企业招聘,对应试人员进行面试,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,
C. 了解全班同学每周体育锻炼的时间,人员不多,适合全面调查,不符合题意,
D. 调查市场上某种食品的色素含量是否符合国家标准,调查具有破坏性,不适合全面调查,符合题意
故选D
【点睛】
本题考查的是全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.理解全面调查与抽样调查的适用范围是解题的关键.
7、C
【解析】
【分析】
根据题意可得:由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于总共有15个人,第8位选手的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.
故选:C.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
8、C
【解析】
【详解】
解:A、“《新闻联播》电视栏目的收视率”适合进行抽样调查,则此项不符题意;
B、“全国中小学生喜欢上数学课的人数” 适合进行抽样调查,则此项不符题意;
C、“某班学生的身高情况”适合进行全面调查,则此项符合题意;
D、“市场上某种食品的色素含量是否符合国家标准” 适合进行抽样调查,则此项不符题意;
故选:C.
【点睛】
本题考查了全面调查与抽样调查,熟练掌握全面调查的定义(为了一定目的而对考察对象进行的全面调查,称为全面调查)和抽样调查的定义(抽样调查是指从总体中抽取样本进行调查,根据样本来估计总体的一种调查)是解题关键.
9、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析即可.
【详解】
解:A.了解一批电灯泡的使用寿命,具有破坏性,适合抽样调查,不符合题意;
B.调查榆林市中学生的视力情况,适合抽样调查,不符合题意;
C.了解榆林市居民节约用水的情况,适合抽样调查,不符合题意;
D.调查“天问一号”火星探测器零部件的的质量,必需采用全面调查,符合题意;
故选:D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
10、B
【解析】
【分析】
根据调查的不同目的来选择全面调查或抽样调查,再判断四个选项即可.
【详解】
解:A选项,C选项,D选项选择调查方式合理,故A选项,C选项,D选项不符合题意.
B选项,为了了解某河流的水质情况,选择普查耗费人力,物力和时间较多,而选择抽样调查更加节约,且和普查的结果相差不大,故B选项符合题意.
故选:B.
【点睛】
本题考查全面调查和抽样调查,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.
二、填空题
1、3.8或4或4.2
【解析】
【分析】
根据中位数的定义确定整数a的值,由平均数的定义即可得出答案.
【详解】
解:∵1,2,4,10,a的中位数是整数a,
∴a=2或3或4,
当a=2时,这组数据的平均数为×(1+2+2+4+10)=3.8;
当a=3时,这组数据的平均数为×(1+2+3+4+10)=4,
当a=4时,这组数据的平均数为×(1+2+4+4+10)=4.2,
故答案为:3.8或4或4.2.
【点睛】
本题主要考查了中位数和平均数,解题的关键是根据中位数的定义确定a的值.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);平均数等于这一组数的和除以它们的个数.
2、5
【解析】
【分析】
根据众数的概念求解.
【详解】
解:这组数据5出现的次数最多.
故众数为5.
故答案为:5,
【点睛】
本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.
3、5.5
【解析】
【分析】
先计算x,后计算中位数.
【详解】
解:∵2,5,x,6的平均数是5,
∴(2+5+x+6)÷4=5,
解得:x=7,
把这组数据从小到大排列为:2,5,6,7,
则这组数据的中位数是5.5;
故答案为:5.5.
【点睛】
本题考查了平均数,中位数,熟练掌握平均数,中位数的计算方法是解题的关键.
4、①②##②①
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
解:①了解1000个灯泡的使用寿命,具有破坏性,适用于抽样调查,故①正确;
②了解某公园全年的游客流量,工作量大,时间长,故需要用抽样调查,故②正确;
③了解生产的一批炮弹的杀伤半径,具有破坏性的调查,适用于抽样调查,故③错误;
④了解一批袋装食品是否含有防腐剂,具有破坏性的调查,,适用于抽样调查,故④错误;故答案为:①②.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、5
【解析】
【分析】
根据中位数的定义:将一组数据按从大到小(或从小到大)的顺序进行排列,处在中间的数或者中间两个数的平均数称为这组数据的中位数,据此进行解答即可.
【详解】
解:把这组数据从小到大排列:3、4、4、5、5、6、8,
最中间的数是5,
则这组数据的中位数是5.
故答案为:5.
【点睛】
本题考查了中位数的定义,熟记定义是解本题的关键.
三、解答题
1、(1)50;见解析;(2)36°;(3)200名
【解析】
【分析】
(1)根据折扇的人数和所占的百分比,求出调查的学生总人数,再用总人数减去其它课程的人数,求出剪纸的人数,从而补全统计图;
(2)用选择“陶艺”课程的学生数除以总人数,再乘以360°即可得出答案;
(3)用八年级的总人数乘以选择“刺绣”课程的学生所占的百分比即可.
【详解】
解:(1)参加问卷调查的学生人数为:(名,
剪纸的人数有:(名,
补全统计图如下:
故答案为:50;
(2)“陶艺”课程所对应的扇形圆心角的度数是.
(3)根据题意得:
(名,
答:估计选择“刺绣”课程的学生有200名.
【点睛】
本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
2、(1)60%;(2)补全图形见解析;(3)7.
【解析】
【分析】
(1)找出嘉嘉射箭成绩不低于9环有几次,再除以总次数即可.
(2)求出嘉嘉的平均成绩,结合题意可知淇淇的平均成绩,设淇淇最后一次成绩为m,利用求平均数公式即列出关于m的等式,求出m,即可补全统计图.
(3)根据众数的定义可求出a的值,即可知嘉嘉六次射箭成绩的中位数,结合中位数的定义,按由大到小或由小到大排列时只有7环和9环相邻时中位数才是8,故可得出,即确定b的最大值.
【详解】
(1)根据统计图可知嘉嘉射箭不低于9环的有3次,
故嘉嘉射箭成绩的优秀率为.
(2)嘉嘉的平均成绩为环
设淇淇最后一次成绩为m,
∴淇淇的平均成绩为
由题意可知,即,
解得:m=8.
故淇淇最后一次成绩为8,
由此,补全折线统计图如下:
(3)淇淇射击5次中8环出现了3次,
∴a=8,
∴嘉嘉六次射箭成绩的中位数是8环,
嘉嘉射箭前5次由小到大排列为:5,7,9,9,10.
∵,
∴当时,才能保证嘉嘉六次射箭成绩的中位数是8环.
故b的最大值为7.
【点睛】
本题考查折线统计图,平均数,众数,中位数.从统计图中得到必要的信息且掌握求平均数的公式,众数和中位数的定义是解答本题的关键.
3、不一定,1.65m和1.60m只是反映了小明和小亮所在班级学生总体的平均身高,而不能反映具体一个个体的身高状况
【解析】
【分析】
根据“平均身高=总身高÷总人数”可得与平均身高有关的因素,与个体身高无关,即可得出结论.
【详解】
解:根据“平均身高=总身高÷总人数”可得:
平均身高与总身高和总人数有关,平均身高不能代表一个人的身高,
答:小颖的说法不一定正确,因为平均身高只是反映了小明和小亮所在班级学生总体的平均身高,而不能反映具体一个个体的身高状况.
【点睛】
题目主要考查数据分析中平均数的影响因素及实际意义,理解平均数的实际意义是解题关键.
4、(1)0.7;(2)0.3;(3)252°.
【解析】
【分析】
(1)根据频率的定义,可得当m很大时,频率将会接近其概率;
(2)根据概率的求法计算即可;
(3)根据扇形图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比计算即可.
【详解】
解:(1)当m很大时,频率将会接近0.7;
(2)获得洗衣液的概率大约是1-0.70=0.3;
(3)扇形的圆心角约是0.7×360°=252°.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:频率=所求情况数与总情况数之比.
5、见解析
【解析】
【分析】
先连续测量10次“拃长”,将对应的数据记录下来,再根据平均数的公式即可求得这10次“拃长”的平均数,进而可求得课桌的长度,身体上的“尺子”有很多,比如:脚的长度,胳膊的长度等等.
【详解】
解:连续测量10次“拃长”的数据分别为20.1,20.2,20.1,19.9,20.3,20.3,19.8,19.9,19.7,19.7(单位:cm),
则这10次“拃长”的平均数为(20.1+20.2+20.1+19.9+20.3+20.3+19.8+19.9+19.7+19.7)÷10=20(cm),
用这把“尺子”测量课桌的长度正好需要测量3次,
则课桌的长度为3×20=60(cm),
身体上的“尺子”有很多,比如:脚的长度,胳膊的长度等等.
【点睛】
本题考查了平均数的计算,熟练掌握平均数计算公式是解决本题的关键.
初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课时作业: 这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课时作业,共20页。试卷主要包含了下列说法中,下列做法正确的是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后复习题: 这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后复习题,共17页。试卷主要包含了下列调查中,最适合全面调查,已知一组数据等内容,欢迎下载使用。
2020-2021学年第九章 数据的收集与表示综合与测试达标测试: 这是一份2020-2021学年第九章 数据的收集与表示综合与测试达标测试,共18页。