北京课改版七年级下册第八章 因式分解综合与测试精练
展开
这是一份北京课改版七年级下册第八章 因式分解综合与测试精练,共16页。试卷主要包含了下列因式分解错误的是,已知c<a<b<0,若M=|a等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列变形,属因式分解的是( )A. B.C. D.2、下列四个式子从左到右的变形是因式分解的为( )A.(x﹣y)(﹣x﹣y)=y2﹣x2B.a2+2ab+b2﹣1=(a+b)2﹣1C.x4﹣81y4=(x2+9y2)(x+3y)(x﹣3y)D.(a2+2a)2﹣8(a2+2a)+12=(a2+2a)(a2+2a﹣8)+123、下列因式分解正确的是( )A. B.C. D.4、下列因式分解错误的是( )A.3x-3y=3(x-y) B.x2-4=(x+2)(x-2)C.x2+6x-9=(x+9)2 D.-x2-x+2=-(x-1)(x+2)5、下列各式中,能用完全平方公式分解因式的是( )A. B.C. D. 6、已知c<a<b<0,若M=|a(a﹣c)|,N=|b(a﹣c)|,则M与N的大小关系是( )A.M<N B.M=N C.M>N D.不能确定7、一元二次方程x2-3x=0的根是( )A.x=0 B.x=3 C.x1=0,x2=3 D.x1=0,x2=-38、下列从左边到右边的变形中,是因式分解的是( )A. B.C. D.9、下列各式能用公式法因式分解的是( ).A. B. C. D.10、下列各式中,不能用平方差公式分解因式的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:______.2、因式分解:__________.3、若x+y=2,xy=-3,则x2y+xy2的值为______.4、分解因式:(a+b)2﹣(a+b)=_______.5、分解因式:_________.三、解答题(5小题,每小题10分,共计50分)1、因式分解(1); (2).2、分解因式:2a2-8ab+8b2.3、(1)计算:x(x2y2﹣xy)÷x2y;(2)分解因式:3bx2+6bxy+3by2.4、因式分解:(1); (2)5、分解因式:(1)ab2﹣a;(2)(a2+1)2﹣4a2.(3)4xy2﹣4x2y﹣y3;(4)x2﹣y2﹣ax﹣ay. ---------参考答案-----------一、单选题1、A【解析】【分析】依据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式判断即可.【详解】解:A、是因式分解,故此选项符合题意;B、分解错误,故此选项不符合题意;C、右边不是几个整式的积的形式,故此选项不符合题意;D、分解错误,故此选项不符合题意;故选:A.【点睛】本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键.2、C【解析】【分析】根据因式分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.【详解】解:A选项,B,D选项,等号右边都不是积的形式,所以不是因式分解,不符合题意;C选项,符合因式分解的定义,符合题意;故选:C.【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.3、B【解析】【分析】直接利用提取公因式法以及十字相乘法分解因式,进而判断即可.【详解】解:A、,故此选项不合题意;B、,故此选项符合题意;C、,故此选项不合题意;D、,不能分解,故此选项不合题意;故选:B.【点睛】本题主要考查了提取公因式法以及十字相乘法分解因式,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.4、C【解析】【分析】提取公因式判断A,根据平方差公式和完全平方公式分解因式判断B,C,D即可.【详解】解:显然对于A,B,D正确,不乖合题意,对于C:右边≠左边,故C错误,符合题意;故选:C.【点睛】本题考查了因式分解,熟练掌因式分解的方法是解题的关键.5、D【解析】【分析】根据完全平方公式法分解因式,即可求解.【详解】解:A、不能用完全平方公式因式分解,故本选项不符合题意;B、不能用完全平方公式因式分解,故本选项不符合题意;C、不能用完全平方公式因式分解,故本选项不符合题意;D、能用完全平方公式因式分解,故本选项符合题意;故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键.6、C【解析】【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(a﹣c)(b﹣a)>0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:∵c<a<b<0,∴a-c>0,∴M=|a(a﹣c)|=- a(a﹣c)N=|b(a﹣c)|=- b(a﹣c)∴M-N=- a(a﹣c)-[- b(a﹣c)]= - a(a﹣c)+ b(a﹣c)=(a﹣c)(b﹣a)∵b-a>0,∴(a﹣c)(b﹣a)>0∴M>N方法二: ∵c<a<b<0,∴可设c=-3,a=-2,b=-1,∴M=|-2×(-2+3)|=2,N=|-1×(-2+3)|=1∴M>N故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(a﹣c)(b﹣a)>0,再进行判断.7、C【解析】【分析】利用提公因式法解一元二次方程.【详解】解: x2-3x=0或故选:C.【点睛】本题考查提公因式法解一元二次方程,是重要考点,掌握相关知识是解题关键.8、A【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A.是因式分解,故本选项符合题意;B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.9、A【解析】【分析】利用完全平方公式和平方差公式对各个选项进行判断即可.【详解】解:A、,故本选项正确;B、x2+2xy-y2 一、三项不符合完全平方公式,不能用公式法进行因式分解,故本选项错误;C、x2+xy-y2中间乘积项不是两底数积的2倍,不能用公式法进行因式分解,故本选项错误;D、-x2-y2不符合平方差公式,不能用公式法进行因式分解,故本选项错误.故选:A.【点睛】本题考查了公式法分解因式,能用完全平方公式进行因式分解的式子的特点是:两项平方项的符号相同,另一项是两底数积的2倍,熟记公式结构是求解的关键.10、B【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各项分析判断后利用排除法求解.【详解】解:A、,两个平方项的符号相反,能用平方差公式分解因式,不合题意;B、,两个平方项的符号相同,不能用平方差公式分解因式,符合题意;C、,可写成(7xy)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意;D、,可写成(4m2)2,可写成(5mp)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意.故选B.【点睛】本题考查了平方差公式分解因式.关键要掌握平方差公式.二、填空题1、【解析】【分析】先提取公因式,再利用完全平方公式进行因式分解.【详解】解:,,,故答案是:.【点睛】本题考查了因式分解,解题的关键是掌握提取公因式及完全平方公式.2、【解析】【分析】直接提取公因式x,再利用平方差公式分解因式得出答案.【详解】解:原式=;故答案为:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.3、-6【解析】【分析】先提取公因式 再整体代入求值即可.【详解】解: x+y=2,xy=-3, 故答案为:【点睛】本题考查的是因式分解的应用,掌握“利用因式分解的方法求解代数式的值” 是解题的关键.4、##【解析】【分析】直接找出公因式(a+b),进而分解因式得出答案.【详解】解:(a+b)2﹣(a+b)=(a+b)(a+b﹣1).故答案为:(a+b)(a+b﹣1).【点睛】此题主要考查因式分解,解题的关键是熟知提公因式法的运用.5、【解析】【分析】利用提取公因式法分解因式即可得答案.【详解】,故答案为:【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.三、解答题1、(1)2ab(2a-5b)2;(2)(a-b)(x+3)(x-3)【解析】【分析】(1)先提取公因式,然后利用完全平方公式分解因式即可;(2)先提取公因式,然后利用平方差公式分解因式即可.【详解】解:(1);(2).【点睛】本题主要考查了因式分解,熟练掌握因式分解的方法是解题的关键.2、2(a-2b)2【解析】【分析】先提取公因式2,再利用完全平方公式因式分解.【详解】解:2a2-8ab+8b2=2(a2-4ab+4b2)=2(a-2b)2.【点睛】本题考查了整式的因式分解,掌握因式分解的完全平方公式是解决本题的关键.3、(1)xy-1;(2)3b(x+y)2.【解析】【分析】(1)先计算单项式乘多项式,再计算多项式除以单项式,即可;(2)先提取公因式3b,再利用完全平方公式继续分解即可.【详解】解:(1)x(x2y2﹣xy)÷x2y=(x3y2-x2y)÷x2y=x3y2÷x2y -x2y÷x2y=xy-1;(2)3bx2+6bxy+3by2=3b(x2+2xy+y2)=3b(x+y)2.【点睛】本题考查了单项式乘多项式,多项式除以单项式以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.4、(1);(2)(5a+b)(a+5b)【解析】【分析】(1)提取公因式,再利用完全平方公式进行因式分解即可;(2)利用平方差公式进行因式分解即可.【详解】解:(1)(2)【点睛】此题考查了因式分解,涉及了完全平方公式和平方差公式,解题的关键是掌握因式分解的方法.5、(1)a(b+1)(b﹣1);(2)﹣y(2x﹣y)2;(3)(a+1)2(a﹣1)2;(4)(x+y)(x﹣y﹣a)【解析】【分析】(1)先提取公因式,再用平方差公式即可;(2)先利用平方差公式,再利用完全平方公式即可;(3)先提取公因式,再利用完全平方公式即可;(4)先利用平方差公式,再提取公因式即可.【详解】解:(1)ab2﹣a, =a(b2﹣1) , =a(b+1)(b﹣1); (2)(a2+1)2﹣4a2 ,=(a2+1+2a)(a2+1﹣2a) , =(a+1)2(a﹣1)2 ;(3)4xy2﹣4x2y﹣y3,=﹣y(y2+4x2﹣4xy),=﹣y(2x﹣y)2;(4) x2﹣y2﹣ax﹣ay,=(x+y)(x﹣y)﹣a(x+y),=(x+y)(x﹣y﹣a).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解因式,分解因式要彻底是解题关键.
相关试卷
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试习题,共16页。试卷主要包含了如图,长与宽分别为a,已知c<a<b<0,若M=|a等内容,欢迎下载使用。
这是一份北京课改版七年级下册第八章 因式分解综合与测试课后作业题,共17页。试卷主要包含了下列因式分解正确的是,将分解因式,正确的是,能利用进行因式分解的是,已知c<a<b<0,若M=|a,下列多项式因式分解正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试练习题,共17页。试卷主要包含了下列因式分解正确的是,已知x,y满足,则的值为,下列多项式中有因式x﹣1的是,如图,长与宽分别为a等内容,欢迎下载使用。