北京课改版七年级下册第八章 因式分解综合与测试巩固练习
展开
这是一份北京课改版七年级下册第八章 因式分解综合与测试巩固练习,共18页。试卷主要包含了把分解因式的结果是.,下列运算错误的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式从左到右的变形中,是因式分解的为( )A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)2、已知c<a<b<0,若M=|a(a﹣c)|,N=|b(a﹣c)|,则M与N的大小关系是( )A.M<N B.M=N C.M>N D.不能确定3、下列多项式中,能用平方差公式分解因式的是( )A.a2-1 B.-a2-1 C.a2+1 D.a2+a4、下列各组式子中,没有公因式的一组是( )A.2xy与x B.(a﹣b)2与a﹣bC.c﹣d与2(d﹣c) D.x﹣y与x+y5、不论x,y取何实数,代数式x2-4x+y2-6y+13总是( )A.非负数 B.正数 C.负数 D.非正数6、把分解因式的结果是( ).A. B.C. D.7、下列运算错误的是( )A. B. C. D.(a≠0)8、下列各式中,从左到右的变形是因式分解的是( )A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣4xy+4y2=(x﹣2y)2 D.x2+1=x(x+)9、下列等式中,从左到右的变形是因式分解的是( )A.a(a-3)=a2-3a B.(a+3)2=a2+6a+9C.6a2+1=a2(6+) D.a2-9=(a+3)(a-3)10、下列等式从左到右的变形,属于因式分解的是( )A. ﹣2x﹣1= B.(a+b)(a﹣b)=C.﹣4x+4= D.﹣1=第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:_________.2、因式分解:__.3、把多项式分解因式的结果是______________.4、实数范围内分解因式:x4+3x2﹣10=___.5、分解因式_________.三、解答题(5小题,每小题10分,共计50分)1、阅读与思考:材料:对于一些次数较高或者是比较复杂的式子进行因式分解时,换元法是一种常用的方法,下面是小影同学用换元法对多项式进行因式分解的过程.解:设,原式第一步第二步第三步第四步(1)小影同学第二步到第三步运用了因式分解的______填写选项.A.提取公因式B.平方差公式C.两数和的平方公式D.两数差的平方公式(2)小影同学因式分解的结果是否彻底?______填彻底或不彻底;若不彻底,请你帮她直接写出因式分解的最后结果______.(3)请你模仿以上方法尝试对多项式进行因式分解.2、分解因式:a3﹣a2b﹣4a+4b.3、(1)计算:2·+; (2)因式分解:3+12+12x.4、阅读下列材料:一般地,没有公因式的多项式,当项数为四项或四项以上时,经常把这些项分成若干组,然后各组运用提取公因式法或公式法分别进行分解,之后各组之间再运用提取公因式法或公式法进行分解,这种因式分解的方法叫做分组分解法.如:因式分解:===(1)利用分组分解法分解因式: ①; ② (2)因式分解:=_______(直接写出结果).5、分解因式:(1)2a3﹣8ab2;(2)(a2+1)2﹣4a2. ---------参考答案-----------一、单选题1、C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A错误,不符合题意;B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;D、等号左右两边式子不相等,故D错误,不符合题意;故选C【点睛】本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.2、C【解析】【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(a﹣c)(b﹣a)>0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:∵c<a<b<0,∴a-c>0,∴M=|a(a﹣c)|=- a(a﹣c)N=|b(a﹣c)|=- b(a﹣c)∴M-N=- a(a﹣c)-[- b(a﹣c)]= - a(a﹣c)+ b(a﹣c)=(a﹣c)(b﹣a)∵b-a>0,∴(a﹣c)(b﹣a)>0∴M>N方法二: ∵c<a<b<0,∴可设c=-3,a=-2,b=-1,∴M=|-2×(-2+3)|=2,N=|-1×(-2+3)|=1∴M>N故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(a﹣c)(b﹣a)>0,再进行判断.3、A【解析】【分析】直接利用平方差公式:,分别判断得出答案;【详解】A、a2-1=(a+1) (a-1),正确; B、-a2-1=-( a2+1 ) ,错误; C、 a2+1,不能分解因式,错误; D、 a2+a=a(a+1) ,错误; 故答案为:A【点睛】本题主要考查了公式法分解因式,正确运用平方差公式是解题的关键.4、D【解析】【分析】根据公因式是各项中的公共因式逐项判断即可.【详解】解:A、2xy与x有公因式x,不符合题意;B、(a﹣b)2与a﹣b有公因式a﹣b,不符合题意;C、c﹣d与2(d﹣c)有公因式c﹣d,不符合题意;D、x﹣y与x+y没有公因式,符合题意,故选:D.【点睛】本题考查公因式,熟练掌握确定公因式的方法是解答的关键.5、A【解析】【分析】先把原式化为,结合完全平方公式可得原式可化为从而可得答案.【详解】解:x2-4x+y2-6y+13 故选A【点睛】本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.6、B【解析】【分析】先用平方差公式分解因式,在提取公因式即可得出结果.【详解】解:a2+2a-b2-2b,=(a2-b2)+(2a-2b),=(a+b)(a-b)+2(a-b),=(a-b)(a+b+2),故选:B.【点睛】此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.7、A【解析】【分析】根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.【详解】解:A. ,故该选项错误,符合题意;B. ,故该选项正确,不符合题意;C. ,故该选项正确,不符合题意; D. (a≠0),故该选项正确,不符合题意,故选A.【点睛】本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.8、C【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从左到右的变形不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从左到右的变形属于因式分解,故本选项符合题意;D.等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;故选:C.【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式.9、D【解析】【分析】根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可.【详解】解:A、a(a-3)=a2-3a,属于整式乘法,不符合题意;B、(a+3)2=a2+6a+9,属于整式乘法,不符合题意;C、6a2+1=a2(6+)不是因式分解,不符合题意;D、a2-9=(a+3)(a3)属于因式分解,符合题意;故选:D【点睛】本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式.10、C【解析】【分析】根据因式分解的定义和方法逐一判断即可.【详解】∵=﹣2x+1≠﹣2x﹣1,∴A不是因式分解,不符合题意;∵(a+b)(a﹣b)=不符合因式分解的定义,∴B不是因式分解,不符合题意;∵﹣4x+4=,符合因式分解的定义,∴C是因式分解,符合题意;∵﹣1≠,不符合因式分解的定义,∴D不是因式分解,不符合题意;故选C.【点睛】本题考查了因式分解的定义即把一个多项式分成几个因式的积的形式,熟练掌握因式分解的实质是恒等变形是解题的关键.二、填空题1、【解析】【分析】原式提取公因式y2,再利用平方差公式分解即可.【详解】解:原式==,故答案为:.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.2、【解析】【分析】先把原式化为 再利用平方差公式分解因式,再把其中一个因式按照平方差公式继续分解,从而可得答案.【详解】解:原式,故答案为:.【点睛】本题考查的是利用平方差公式分解因式,注意分解因式一定要分解到每个因式都不能再分解为止.3、## 【解析】【分析】直接提取公因式3x,再利用平方差公式分解因式即可.【详解】解:==.故答案为:.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.4、【解析】【分析】先用十字相乘分解,再用平方差公式分解即可.【详解】解:x4+3x2﹣10= = 故答案为:.【点睛】本题考查了实数范围内因式分解,解题关键是熟练运用因式分解的方法在实数范围内进行分解.5、【解析】【分析】直接提取公因式m,进而分解因式得出答案.【详解】解:=m(m+6).故答案为:m(m+6).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.三、解答题1、(1) ;(2)不彻底,;(3).【解析】【分析】(1)小影同学第二步到第三步运用了完全平方公式中两数和的平方公式,即可得出选项;(2)根据完全平方公式中的两数差的平方公式可继续进行因式分解;(3)根据材料,用换元法进行分解因式即可.【详解】解:(1)小影同学第二步到第三步运用了完全平方公式中两数和的平方公式,故选:C;(2)小影同学因式分解的结果不彻底,原式 ,故答案为:不彻底,;(3)设,原式,,,,.【点睛】本题考查了因式分解换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.2、(a﹣b)(a+2)(a﹣2)【解析】【分析】先分组,再提公因式,最后用平方差公式进一步进行因式分解.【详解】解:a3﹣a2b﹣4a+4b=(a3﹣4a)﹣(a2b﹣4b)=a(a2﹣4)﹣b(a2﹣4)=(a﹣b)(a2﹣4)=(a﹣b)(a+2)(a﹣2).【点睛】本题考查了因式分解法中的分组法、提公因式法、平方差公式的综合应用,正确地进行分组,找到公因式,并且注意因式分解要彻底,这是解题的关键.3、(1)0;(2)3x【解析】【分析】(1)根据题意,得·=,,合并同类项即可;(2)先提取公因式3x,后套用完全平方公式即可.【详解】(1)2·+原式=2+-3=0.(2)原式=3x(+4x+4)=3x.【点睛】本题考查了幂的运算,整式的加减,因式分解,熟练掌握公式,灵活按照先提取公因式,后用公式的思路分解因式是解题的关键.4、(1)① ;②;(2).【解析】【分析】(1)仿照题目所给例题进行分组分解因式即可;(2)利用平方差和完全平方公式进行分解因式即可.【详解】解:(1)①;②==;(2),故答案为:.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式分方法.5、(1);(2).【解析】【分析】(1)综合利用提公因式法和平方差公式分解因式即可得;(2)综合利用平方差公式()和完全平方公式()分解因式即可得.【详解】解:(1)原式,;(2)原式,.【点睛】本题考查了因式分解,熟练掌握乘法公式是解题关键.
相关试卷
这是一份七年级下册第八章 因式分解综合与测试达标测试,共17页。试卷主要包含了下列因式分解正确的是,下列各式从左至右是因式分解的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时练习,共15页。试卷主要包含了下列分解因式结果正确的是,下列因式分解正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试达标测试,共16页。