北京课改版七年级下册第八章 因式分解综合与测试综合训练题
展开这是一份北京课改版七年级下册第八章 因式分解综合与测试综合训练题,共16页。试卷主要包含了已知的值为5,那么代数式的值是,下列因式分解正确的是,下列分解因式正确的是,多项式分解因式的结果是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列多项式因式分解正确的是( )
A. B.
C. D.
2、下列各式中从左到右的变形,是因式分解的是( )
A. B.
C. D.
3、下列各式中,由左向右的变形是分解因式的是( )
A. B.
C. D.
4、已知的值为5,那么代数式的值是( )
A.2030 B.2020 C.2010 D.2000
5、判断下列不能运用平方差公式因式分解的是( )
A.﹣m2+4 B.﹣x2–y2
C.x2y2﹣1 D.(m﹣a)2﹣(m+a)2
6、下列因式分解正确的是( )
A. B.
C. D.
7、下列各式从左到右的变形是因式分解的是( )
A.ax+bx+c=(a+b)x+c B.(a+b)(a﹣b)=a2﹣b2
C.(a+b)2=a2+2ab+b2 D.a2﹣5a﹣6=(a﹣6)(a+1)
8、下列分解因式正确的是( )
A. B.
C. D.
9、多项式分解因式的结果是( )
A. B.
C. D.
10、下列各式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、因式分解:__________.
2、把多项式分解因式的结果是______.
3、因式分解:______.
4、分解因式:5x4﹣5x2=________________.
5、在实数范围内分解因式:x2﹣3xy﹣y2=___.
三、解答题(5小题,每小题10分,共计50分)
1、将下列各式分解因式:
(1); (2)
2、分解因式:
(1);
(2)
3、(1)计算:2·+;
(2)因式分解:3+12+12x.
4、仔细阅读下面例题,解答问题:
例题:已知:二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.
解:设另一个因式为(x+n),得
x2﹣4x+m=(x+3)(x+n),
则x2﹣4x+m=x2+(n+3)x+3n
∴
解得:n=﹣7,m=﹣21
∴另一个因式为(x﹣7),m的值为﹣21.
问题:仿照以上方法解答下面问题:
已知二次三项式2x2+3x﹣k有一个因式是(x﹣5),求另一个因式以及k的值.
5、分解因式
(1); (2)
---------参考答案-----------
一、单选题
1、D
【解析】
【分析】
根据因式分解的定义,把一个多项式化乘几个因式积的形式可判断A,还能继续因式分解可判断B,因式中不能出现分式可判断C,利用完全平方公式因式分解可判断D.
【详解】
解:A. ,因为括号外还有-5,不是乘积形式,故选项A不正确;
B. ,因式分解不彻底,故选项B不正确;
C. 因式中出现分式,故选项C不正确;
D. 根据完全平方公式因式分解,故选项D正确.
故选择D.
【点睛】
本题考查因式分解,掌握因式分解的方法与要求,注意因式分解是几个因式乘积,分解彻底不能再分解为止,因式中不能出现分式.
2、B
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.
【详解】
解:A.,单项式不能因式分解,故此选项不符合题意;
B.,是因式分解,故此选项符合题意;
C.,是整式计算,故此选项不符合题意;
D.,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;
故选:B.
【点睛】
本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.
3、B
【解析】
【分析】
判断一个式子是否是因式分解的条件是①等式的左边是一个多项式,②等式的右边是几个整式的积,③左、右两边相等,根据以上条件进行判断即可.
【详解】
解:A、,不是因式分解;故A错误;
B、,是因式分解;故B正确;
C、,故C错误;
D、,不是因式分解,故D错误;
故选:B.
【点睛】
本题考查了因式分解的意义,把多项式转化成几个整式积的形式是解题关键.
4、B
【解析】
【分析】
将化简为,再将代入即可得.
【详解】
解:∵,
把代入,原式=,
故选B.
【点睛】
本题考查了代数式求值,解题的关键是把掌握提公因式.
5、B
【解析】
【分析】
根据平方差公式:进行逐一求解判断即可.
【详解】
解:A、,能用平方差公式分解因式,不符合题意;
B、,不能用平方差公式分解因式,符合题意;
C、,能用平方差公式分解因式,不符合题意;
D、能用平方差公式分解因式,不符合题意;
故选B.
【点睛】
本题主要考查了平方差公式分解因式,解题的关键在于能够熟练掌握平方差公式.
6、C
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解.
【详解】
解:A、,错误,故该选项不符合题意;
B、,错误,故该选项不符合题意;
C、,正确,故该选项符合题意;
D、,不能进行因式分解,故该选项不符合题意;
故选:C.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
7、D
【解析】
【分析】
根据因式分解的定义对各选项进行逐一分析即可.
【详解】
解:A、ax+bx+c=(a+b)x+c,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;
B、(a+b)(a﹣b)=a2﹣b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;
C、(a+b)2=a2+2ab+b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;
D、a2﹣5a﹣6=(a﹣6)(a+1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;
故选:D.
【点睛】
本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
8、C
【解析】
【分析】
根据因式分解的方法逐个判断即可.
【详解】
解:A. ,原选项错误,不符合题意;
B. ,原选项错误,不符合题意;
C. ,正确,符合题意;
D. ,原选项错误,不符合题意;
故选:C.
【点睛】
本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.
9、B
【解析】
【分析】
先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a+b)(a-b).
【详解】
解:ax2-ay2
=a(x2-y2)
=a(x+y)(x-y).
故选:B.
【点睛】
本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.
10、C
【解析】
【分析】
根据因式分解的定义判断即可.
【详解】
解:因式分解即把一个多项式化成几个整式的积的形式.
A. ,不是几个整式的积的形式,A选项不是因式分解;
B. ,不是几个整式的积的形式,B选项不是因式分解
C. ,符合因式分解的定义,C是因式分解.
D. ,不是几个整式的积的形式,D选项不是因式分解;
故选C
【点睛】
本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.
二、填空题
1、
【解析】
【分析】
直接提取公因式x,再利用平方差公式分解因式得出答案.
【详解】
解:原式=;
故答案为:.
【点睛】
本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.
2、
【解析】
【分析】
先提取4m,再根据平方差公式即可因式分解.
【详解】
=
故答案为:.
【点睛】
此题主要考查因式分解,解题的关键是熟知平方差公式的特点.
3、
【解析】
【分析】
直接提取公因式,再利用完全平方公式分解因式得出答案.
【详解】
解:原式
.
故答案为:.
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.
4、5x2(x+1)(x-1)
【解析】
【分析】
直接提取公因式5x2,进而利用平方差公式分解因式.
【详解】
解:5x4-5x2=5x2(x2-1)
=5x2(x+1)(x-1).
故答案为:5x2(x+1)(x-1).
【点睛】
本题考查了提取公因式法、公式法分解因式,正确运用乘法公式是解题关键.
5、
【解析】
【分析】
先利用配方法,再利用平方差公式即可得.
【详解】
解:
=
=
=.
故答案为:.
【点睛】
本题主要考查了用配方法和平方差公式法进行因式分解,因式分解的常用方法有:配方法、公式法、提取公因式法、十字相乘法等.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)首先提取公因式-6,再利用完全平方公式继续分解即可;
(2)首先提取公因式3ab,再利用平方差进行分解即可.
【详解】
解:(1)
=
=;
(2)
=
=.
【点睛】
本题主要考查了提公因式法、完全平方公式和平方差公式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果有公因式先提取公因式,再考虑运用公式来分解.
2、(1);(2)
【解析】
【分析】
(1)利用完全平方公式进行分解因式,即可解答;
(2)把分解为,即可把原式转化为,再由提公因式法和十字相乘法进行因式分解即可.
【详解】
(1)原式,
,
;
(2)原式,
,
,
,
.
【点睛】
本题考查了因式分解,解决本题的关键是熟记因式分解的方法.
3、(1)0;(2)3x
【解析】
【分析】
(1)根据题意,得·=,,合并同类项即可;
(2)先提取公因式3x,后套用完全平方公式即可.
【详解】
(1)2·+
原式=2+-3
=0.
(2)原式=3x(+4x+4)
=3x.
【点睛】
本题考查了幂的运算,整式的加减,因式分解,熟练掌握公式,灵活按照先提取公因式,后用公式的思路分解因式是解题的关键.
4、另一个因式为(2x+13),k的值为65.
【解析】
【分析】
设另一个因式为(2x+a),根据题意列出等式,利用系数对应相等列出得到关于a和k的方程求解即可.
【详解】
解:设另一个因式为(2x+a),得2x2+3x﹣k=(x﹣5)(2x+a)
则2x2+3x﹣k=2x2+(a﹣10)x﹣5a
∴,
解得:a=13,k=65.
故另一个因式为(2x+13),k的值为65.
【点睛】
此题考查了因式分解和整式乘法的关系,解题的关键是根据题意设出另一个因式列出等式求解.
5、(1);(2).
【解析】
【分析】
(1)先提取公因式 再利用完全平方公式进行分解即可;
(2)先把原式化为:,再提取公因式 再利用平方差公式进行分解即可.
【详解】
(1)解:原式=
=
(2)解:原式=
=
=
【点睛】
本题考查的是综合提公因式与公式法分解因式,易错点是分解因式不彻底,注意一定要分解到每个因式都不能再分解为止.
相关试卷
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试同步测试题,共16页。
这是一份北京课改版七年级下册第八章 因式分解综合与测试练习,共16页。试卷主要包含了下列各式的因式分解中正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课后练习题,共16页。试卷主要包含了下列多项式中有因式x﹣1的是,把分解因式的结果是.,下列因式分解中,正确的是等内容,欢迎下载使用。