![难点解析沪科版九年级数学下册第24章圆课时练习试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12692190/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析沪科版九年级数学下册第24章圆课时练习试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12692190/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析沪科版九年级数学下册第24章圆课时练习试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12692190/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
九年级下册第24章 圆综合与测试当堂达标检测题
展开
这是一份九年级下册第24章 圆综合与测试当堂达标检测题,共28页。
沪科版九年级数学下册第24章圆课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点P(-3,1)关于原点对称的点的坐标是( )A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)2、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )A.45° B.60° C.90° D.120°3、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点、、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是( )A. B.C. D.4、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )A.3 B.1 C. D.5、如图,AB,CD是⊙O的弦,且,若,则的度数为( )A.30° B.40° C.45° D.60°6、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )A.相离 B.相切 C.相交 D.相交或相切7、下面的图形中既是轴对称图形又是中心对称图形的是( )A. B. C. D.8、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是( )A.1cm B.2cm C.2cm D.4cm9、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是( )A.AM=BM B.CM=DM C. D.10、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A.3 B.4 C.5 D.6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.2、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是______米.3、如图,在平面直角坐标系xOy中,半径为1的半圆O上有一动点B,点,为等腰直角三角形,A为直角顶点,且C在第一象限,则线段OC长度的最大值为______.4、如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为_______.5、如图,在等腰直角中,已知,将绕点逆时针旋转60°,得到,连接,若,则________.三、解答题(5小题,每小题10分,共计50分)1、如图,△ABC内接于⊙O,D是⊙O的直径AB的延长线上一点,∠DCB=∠OAC.过圆心O作BC的平行线交DC的延长线于点E.(1)求证:CD是⊙O的切线;(2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.2、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接写出点B关于原点对称的点B′的坐标: ;(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.3、如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,半径OD弦BC.(1)求证:弧AD=弧CD;(2)连接AC、BD相交于点F,AC与OD相交于点E,连接CD,若⊙O的半径为5,BC=6,求CD和EF的长.4、如图,,是的两条切线,切点分别为,,连接并延长交于点,过点作的切线交的延长线于点,于点.(1)求证:四边形是矩形;(2)若,,求的长..5、如图,在直角坐标系中,将△ABC绕点A顺时针旋转90°.(1)画出旋转后的△AB1C1,并写出B1、C1的坐标;(2)求线段AB在旋转过程中扫过的面积. -参考答案-一、单选题1、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可.【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1).故选:C.【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.2、B【分析】设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.【详解】解:设∠ADC=α,∠ABC=β; ∵四边形ABCO是菱形, ∴∠ABC=∠AOC; ∠ADC=β; 四边形为圆的内接四边形,α+β=180°, ∴ , 解得:β=120°,α=60°,则∠ADC=60°, 故选:B.【点睛】该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.3、A【分析】设正六边形的边长为1,当在上时,过作于 而 求解此时的函数解析式,当在上时,延长交于点 过作于 并求解此时的函数解析式,当在上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.【详解】解:设正六边形的边长为1,当在上时,过作于 而 当在上时,延长交于点 过作于 同理: 则为等边三角形, 当在上时,连接 由正六边形的性质可得: 由正六边形的对称性可得: 而 由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,所以符合题意的是A,故选A【点睛】本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.4、D【分析】根据题意及旋转的性质可得是等边三角形,则,,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.【详解】解:如图,设与相交于点,,,,旋转,,是等边三角形,,,,,,,,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.5、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.【详解】解:∵,∴,∵,∴,故选:B.【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.6、B【分析】圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.【详解】解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm, ⊙O的半径等于圆心O到直线l的距离, 直线l与⊙O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.7、A【详解】解:A、既是轴对称图形又是中心对称图形,此项符合题意;B、是中心对称图形,不是轴对称图形,此项不符题意;C、是轴对称图形,不是中心对称图形,此项不符题意;D、是轴对称图形,不是中心对称图形,此项不符题意;故选:A.【点睛】本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.8、D【分析】根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于 设半径为r,即OA=OB=AB=r, OM=OA•sin∠OAB=, ∵圆O的内接正六边形的面积为(cm2), ∴△AOB的面积为(cm2), 即, , 解得r=4, 故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.9、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.【详解】解:∵弦AB⊥CD,CD过圆心O,∴AM=BM,,,即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CM和DM不一定相等,故选B.【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理.10、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.【详解】由旋转的性质得:,,是等边三角形,,,.故选:A.【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.二、填空题1、相切或相交【详解】首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离,从而得出答案.【分析】解:∵x2﹣5x+6=0,(x﹣2)(x﹣3)=0,解得:x1=2,x2=3,∵圆的半径是方程x2﹣5x+6=0的根,即圆的半径为2或3,∴当半径为2时,直线l与圆O的的位置关系是相切,当半径为3时,直线l与圆O的的位置关系是相交,综上所述,直线l与圆O的的位置关系是相切或相交.故答案为:相切或相交.【点睛】本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定.2、【分析】设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可.【详解】解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为,根据题意可得:,解得:,故答案是:.【点睛】本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解.3、1+【分析】过点C作CD⊥x轴于D,过B作BE⊥x轴于E,连结OB,设OD=x,根据点A(3,0)可求AD=x-3,根据为等腰直角三角形,得出AB=AC,∠BAC=90°,再证△BAE≌△ACD(AAS),得出BE=AD=x-3,EA=DC,在Rt△EBO中,根据勾股定理,得出CD=AE=,根据勾股定理CO=,当OD=CD时OC最大,OC=此时解方程即可.【详解】解:过点C作CD⊥x轴于D,过B作BE⊥x轴于E,连结OB,设OD=x,∵点A(3,0)∴AD=x-3,∵为等腰直角三角形,∴AB=AC,∠BAC=90°,∴∠BAE+∠CAD=180°-∠BAC=180°-90°=90°,∵CD⊥x轴, BE⊥x轴,∴∠BEA=∠ADC=90°,∴∠ACD+∠CAD=90°,∴∠ACD=∠BAE,在△BAE和△ACD中,,∴△BAE≌△ACD(AAS),∴BE=AD=x-3,EA=DC,在Rt△EBO中,OB=1,BE= x-3,根据勾股定理,∴EA=OE+OA=,∴CD=AE=,∴CO=,当OD=CD时OC最大,OC=,此时,∴,∴,∴,∴,(舍去),∴线段OC长度的最大值为.故答案为:1+.【点睛】本题考查等腰直角三角形性质,三角形全等判定与性质,勾股定理,掌握等腰直角三角形性质,三角形全等判定与性质,勾股定理是解题关键.4、##【分析】延长AG交CD于M,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.【详解】解:延长AG交CD于M,如图1,∵ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC,∵AD=CD,∠ADB=∠BDC,DG=DG,∴△ADG≌△DGC,∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC,∴△ADM≌△CDF,∴FD=DM且AE=DF,∴AE=DM且AB=AD,∠ADM=∠BAD=90°,∴△ABE≌△DAM,∴∠DAM=∠ABE,∵∠DAM+∠BAM=90°,∴∠BAM+∠ABE=90°,即∠AHB=90°,∴点H是以AB为直径的圆上一点.如图2,取AB中点O,连接OD,OH,∵AB=AD=2,O是AB中点,∴AO=1=OH,在Rt△AOD中,OD=,∵DH≥OD-OH,∴DH≥-1,∴DH的最小值为-1,故答案为:-1.【点睛】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.5、【分析】如图连接并延长,过点作交于点,,由题意可知为等边三角形,,,在中;在中计算求解即可.【详解】解:如图连接并延长,过点作交于点, 由题意可知,,为等边三角形 在中在中故答案为:.【点睛】本题考查了旋转的性质,等边三角形,勾股定理,含的直角三角形等知识.解题的关键在于做辅助线构造直角三角形.三、解答题1、(1)见解析(2)3,2【分析】(1)由等腰三角形的性质与已知条件得出,∠OCA=∠DCB,由圆周角定理可得∠ACB=90°,进而得到∠OCD=90°,即可得出结论;(2)根据平行线分线段成比例定理得到,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,在Rt△OCD中,根据勾股定理求出x=1,即⊙O的半径为3,由平行线的性质得到∠OCB=∠EOC,在Rt△OCE中,可求得tan∠EOC=2,即tan∠OCB=2.(1)证明:∵OA=OC,∴∠OAC=∠OCA,∵∠DCB=∠OAC, ∴∠OCA=∠DCB, ∵AB是⊙O的直径,∴∠ACB=90°,∴∠OCA+∠OCB=90°,∴∠DCB+∠OCB=90°,即∠OCD=90°,∴OC⊥DC, ∵OC是⊙O的半径,∴CD是⊙O的切线;(2)∵OE∥BC,∴,∵CD=4,CE=6,∴,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,∵OC⊥DC,∴△OCD是直角三角形,在Rt△OCD中,OC2+CD2=OD2,∴(3x)2+42=(5x)2,解得,x=1,∴OC=3x=3,即⊙O的半径为3,∵BC∥OE,∴∠OCB=∠EOC,在Rt△OCE中,tan∠EOC=,∴tan∠OCB=tan∠EOC=2.【点睛】本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键.2、(1)(4,﹣1);(2)见解析;(3)见解析.【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.【详解】(1)点B关于原点对称的点B′的坐标为(4,﹣1),故答案为:(4,﹣1);(2)如图所示,△A1B1C1即为所求.(3)如图所示,△A2B2C2即为所求.【点睛】本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.3、(1)见解析;(2)CD=,EF=1.【分析】(1)连接OC,根据圆的性质,得到OB=OC;根据等腰三角形的性质,得到;根据平行线的性质,得到;在同圆和等圆中,根据相等的圆心解所对的弧等即得证.(2)根据直径所对的圆周角是直角求出∠ACB=90°,根据平行线的性质求得∠AEO=∠ACB=90°,利用勾股定理求出AC=8,根据垂径定理求得EC=AE=4,根据中位线定理求出OE,在Rt△CDE中,根据勾股定理求出CD,因为,所以△EDF∽△BCF,最后根据似的性质,列方程求解即可.【详解】(1)解:连结OC.∵∴∠1=∠B∠2=∠C∵OB =OC∴∠B=∠C∴∠1=∠2∴弧AD=弧CD(2)∵AB是的直径∴∠ACB=90°∵∴∠AEO=∠ACB=90°Rt△ABC中,∠ACB=90°,∵BC=6,AB=10 ∴AC=8∵半径OD⊥AC于E ∴EC=AE=4 OE=∴ED=2 由勾股定理得,CD=∵∴△EDF∽△CBF∴设EF=x,则FC=4-x∴EF=1,经检验符合题意.【点睛】本题考查了圆的综合题,圆的有关性质:圆的半径相等;同圆或等圆中,相等的圆心角所对的弧等;直径所对的圆周角是直角;垂径定理;平行线的性质,勾股定理,三角形中位线定理,三角形相似的判定和性质等知识,正确理解圆的相关性质是解题的关键.4、(1)见详解;(2)7【分析】(1)根据切线的性质和矩形的判定定理即可得到结论;(2)根据切线长定理可得AB=AC,BE=DE,再利用勾股定理即可求解.【详解】(1)证明:∵,DE是的两条切线,于点∴∠EFC=∠EDC=∠FCD=90°,∴四边形是矩形;(2)∵四边形是矩形,∴EF=,CF=,∵,,DE是的两条切线,∴AB=AC,BE=DE,设AB=AC=x,则AE=x+2,AF=x-2,在中,,解得:x=5,∴AC=5+2=7.【点睛】本题主要考查切线长定理和勾股定理以及矩形的判定定理,掌握切线长定理以及勾股定理是解题的关键.5、(1)作图见解析,、;(2)【分析】(1)将绕点A顺时针旋转90°得,根据点A、B、C坐标,即可确定出点、的坐标;(2)根据勾股定理求出AB的长,由扇形面积公式即可得出答案.【详解】(1)将绕点A顺时针旋转90°得如图所示:∴、;(2)由图可知:,∴线段AB在旋转过程中扫过的面积为.【点睛】本题考查作旋转图形以及扇形的面积公式,掌握旋转的性质及扇形的面积公式是解题的关键.
相关试卷
这是一份2021学年第24章 圆综合与测试当堂达标检测题,共29页。试卷主要包含了下列说法正确的个数有,下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份2021学年第24章 圆综合与测试同步测试题,共29页。
这是一份沪科版九年级下册第24章 圆综合与测试巩固练习,共35页。试卷主要包含了下列叙述正确的有个.等内容,欢迎下载使用。