|试卷下载
终身会员
搜索
    上传资料 赚现金
    难点详解沪科版九年级数学下册第24章圆定向练习试题(含详细解析)
    立即下载
    加入资料篮
    难点详解沪科版九年级数学下册第24章圆定向练习试题(含详细解析)01
    难点详解沪科版九年级数学下册第24章圆定向练习试题(含详细解析)02
    难点详解沪科版九年级数学下册第24章圆定向练习试题(含详细解析)03
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第24章 圆综合与测试同步测试题

    展开
    这是一份2021学年第24章 圆综合与测试同步测试题,共29页。

    沪科版九年级数学下册第24章圆定向练习

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,PAPB是⊙O的切线,AB为切点,PA=4,则PB的长度为(   

    A.3 B.4 C.5 D.6

    2、点P(3,﹣2)关于原点O的对称点的坐标是(  )

    A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)

    3、如图所示四个图形中,既是轴对称图形又是中心对称图形的是(   

    A. B.

    C. D.

    4、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为(    )cm.

    A.3π B.6π C.12π D.18π

    5、下列四个图案中,是中心对称图形但不是轴对称图形的是(   

    A. B. C. D.

    6、如图,的直径,外一点,过的切线,切点为,连接,点右侧的半圆周上运动(不与重合),则的大小是(   

    A.19° B.38° C.52° D.76°

    7、如图,AB的直径,的弦DC的延长线与AB的延长线相交于点P于点E,则阴影部分的面积为(   

    A. B. C. D.

    8、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为(   

    A.45° B.60° C.90° D.120°

    9、如图,是△ABC的外接圆,已知,则的大小为(     

    A.55° B.60° C.65° D.75°

    10、如图,DC是⊙O的直径,弦ABCDM,则下列结论不一定成立的是(    )

    A.AM=BM B.CM=DM C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积.这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的.如果借用一个圆形纸片,我们就可以化圆为方,方法如下:

    已知:⊙O(纸片),其半径为

    求作:一个正方形,使其面积等于⊙O的面积.

    作法:①如图1,取⊙O的直径,作射线,过点的垂线

    ②如图2,以点为圆心,为半径画弧交直线于点

    ③将纸片⊙O沿着直线向右无滑动地滚动半周,使点分别落在对应的处;

    ④取的中点,以点为圆心,为半径画半圆,交射线于点

    ⑤以为边作正方形

    正方形即为所求.

    根据上述作图步骤,完成下列填空:

    (1)由①可知,直线为⊙O的切线,其依据是________________________________.

    (2)由②③可知,,则_____________,____________(用含的代数式表示).

    (3)连接,在Rt中,根据,可计算得_________(用含的代数式表示).由此可得

    2、在平面直角坐标系中,A(-1,0),B(2,0),∠OCB=30°,D为线段BC的中点,线段AD交线段OC于点E,则△AOE面积的最大值为___________

    3、如图,x轴交于两点,,点Py轴上的一个动点,PD于点D,则△ABD的面积的最大值是________;线段PD的最小值是________.

    4、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是________

    5、已知一个扇形的半径是1,圆心角是120°,则这个扇形的面积是___________.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图1,在⊙O中,ACBD,且ACBD,垂足为点E

    (1)求∠ABD的度数;

    (2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;

    (3)在(2)的条件下,求的长.

    2、如图1,点O为直线AB上一点,将两个含60°角的三角板MON和三角板OPQ如图摆放,使三角板的一条直角边OMOP在直线AB上,其中

    (1)将图1中的三角板OPQ绕点O按逆时针方向旋转至图2的位置,使得边OP的内部且平分,此时三角板OPQ旋转的角度为______度;

    (2)三角板OPQ在绕点O按逆时针方向旋转时,若OP的内部.试探究之间满足什么等量关系,并说明理由;

    (3)如图3,将图1中的三角板MON绕点O以每秒2°的速度按顺时针方向旋转,同时将三角板OPQ绕点O以每秒3°的速度按逆时针方向旋转,将射线OB绕点O以每秒5°的速度沿逆时针方向旋转,旋转后的射线OB记为OE,射线OC平分,射线OD平分,当射线OCOD重合时,射线OE改为绕点O以原速按顺时针方向旋转,在OCOD第二次相遇前,当时,直接写出旋转时间t的值.

    3、如图AB是⊙O的直径,弦CDAB于点E,作∠FAC=∠BAC,过点CCFAF于点F

    (1)求证:CF是⊙O的切线;

    (2)若sin∠CAB=,求=_______.(直接写出答案)

    4、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).

    (1)直接写出点B关于原点对称的点B′的坐标:     

    (2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1

    (3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2

    5、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.

    已知:⊙O.

    求作:⊙O的内接等腰直角三角形ABC.

    作法:如图,

    ①作直径AB

    ②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;

    ③作直线MO交⊙O于点CD

    ④连接ACBC

    所以△ABC就是所求的等腰直角三角形.

    根据小明设计的尺规作图过程,解决下面的问题:

    (1)使用直尺和圆规,补全图形;(保留作图痕迹)

    (2)完成下面的证明.

    证明:连接MAMB

    MA=MBOA=OB

    MOAB的垂直平分线.

    AC=                 

    AB是直径,

    ∴∠ACB=        (                        ) (填写推理依据) .

    ∴△ABC是等腰直角三角形.

     

    -参考答案-

    一、单选题

    1、B

    【分析】

    由切线的性质可推出.再根据直角三角形全等的判定条件“HL”,即可证明,即得出

    【详解】

    PAPB是⊙O的切线,AB为切点,

    ∴在中,

    故选:B

    【点睛】

    本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.

    2、B

    【分析】

    根据“平面直角坐标系中任意一点Pxy),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.

    【详解】

    解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).

    故选:B

    【点睛】

    本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.

    3、D

    【分析】

    根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.

    【详解】

    解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;

    B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;

    C.不是轴对称图形,是中心对称图形,故本选项不符合题意;

    D.既是轴对称图形,又是中心对称图形,故本选项符合题意.

    故选:D.

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    4、B

    【分析】

    利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.

    【详解】

    解:它的侧面展开图的面积=×2×2×3=6(cm2).

    故选:B.

    【点睛】

    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.

    5、D

    【分析】

    根据轴对称图形与中心对称图形的概念求解.

    【详解】

    解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;

    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;

    C、是轴对称图形,是中心对称图形,故此选项不符合题意;

    D、不是轴对称图形,是中心对称图形,故此选项符合题意;

    故选:D.

    【点睛】

    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.

    6、B

    【分析】

    连接的直径,求解 结合的切线,求解 再利用圆周角定理可得答案.

    【详解】

    解:连接 的直径,

    的切线,

    故选B

    【点睛】

    本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.

    7、B

    【分析】

    由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.

    【详解】

    解:根据题意,如图:

    AB的直径,OD是半径,

    AE=CE

    ∴阴影CED的面积等于AED的面积,

    故选:B

    【点睛】

    本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.

    8、B

    【分析】

    设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.

    【详解】

    解:设∠ADC=α,∠ABC=β

    ∵四边形ABCO是菱形,

    ∴∠ABC=∠AOC

    ADC=β

    四边形为圆的内接四边形,

    α+β=180°,

    解得:β=120°,α=60°,则∠ADC=60°,

    故选:B.

    【点睛】

    该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.

    9、C

    【分析】

    OA=OB,求出∠AOB=130°,根据圆周角定理求出的度数.

    【详解】

    解:∵OA=OB

    ∴∠BAO=

    ∴∠AOB=130°.

    =AOB=65°.

    故选:C

    【点睛】

    此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.

    10、B

    【分析】

    根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.

    【详解】

    解:∵弦ABCDCD过圆心O

    AM=BM

    即选项A、C、D选项说法正确,不符合题意,

    当根据已知条件得CMDM不一定相等,

    故选B.

    【点睛】

    本题考查了垂径定理,解题的关键是掌握垂径定理.

    二、填空题

    1、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2);(3)

    【分析】

    (1)根据切线的定义判断即可.

    (2)由=AC+计算即可;根据计算即可.

    (3)根据勾股定理,得即为正方形的面积,比较与圆的面积的大小关机即可.

    【详解】

    解:(1)∵⊙O的直径,作射线,过点的垂线

    ∴经过半径外端且垂直于这条半径的直线是圆的切线;

    故答案为:经过半径外端且垂直于这条半径的直线是圆的切线;

     (2)根据题意,得AC=r==πr

    =AC+=r+πr

    =

    MA=-r=

    故答案为:                               

    (3)如图,连接ME

    根据勾股定理,得

    =

    =

     故答案为:

    【点睛】

    本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键.

    2、

    【分析】

    过点轴,交于点,根据中位线定理可得,设点轴的距离为G,则△AOE边上的高,作的外接圆,则当点位于图中处时,最大,根据三角形面积公式计算即可.

    【详解】

    解:过点轴,交于点

    A(-1,0),B(2,0),

    D为线段BC的中点,轴,

    设点轴的距离为

    则△AOE边上的高

    的外接圆,

    则当点位于图中处时,最大,

    因为

    为等边三角形,

    ,

    ,

    故答案为:.

    【点睛】

    本题考查了三角形中位线定理,圆周角定理,圆周角和圆心角的关系,等边三角形的判定与性质,解直角三角形等知识点,根据题意得出点的位置是解本题的关键.

    3、       

    【分析】

    根据题中点的坐标可得圆的直径,半径为1,分析AB定长为底,点D在圆上,高最大为圆的半径,即可得出三角形最大的面积;连接AP,设点,根据切线的性质及勾股定理可得,由其非负性即可得.

    【详解】

    解:如图所示:当点P到如图位置时,的面积最大,

    圆的直径,半径为1,

    AB定长为底,点D在圆上,高最大为圆的半径,如图所示:

    此时面积的最大值为:

    如图所示:连接AP

    PD于点D

    设点

    中,

    中,

    时,PD取得最小值,

    最小值为

    故答案为:①;②

    【点睛】

    题目主要考查切线的性质及勾股定理的应用,理解题意,作出相应图形求出解析式是解题关键.

    4、

    【分析】

    由勾股定理求得圆锥母线长为,再由圆锥的侧面积公式即可得出圆锥侧面积为

    【详解】

    是一个圆锥在某平面上的正投影

    为等腰三角形

    ADBC

    中有

    由圆锥侧面积公式有

    故答案为:

    【点睛】

    本题考查了计算圆锥的侧面积,若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为,圆锥的侧面积为

    5、

    【分析】

    根据圆心角为的扇形面积是进行解答即可得.

    【详解】

    解:这个扇形的面积

    故答案是:

    【点睛】

    本题考查了扇形的面积,解题的关键是掌握扇形的面积公式.

    三、解答题

    1、(1);(2);(3)

    【分析】

    (1)如图,过 垂足分别为 连接证明 四边形为正方形,可得 证明 可得答案;

    (2)先求解 再结合(1)的结论可得答案;

    (3)如图,连接 先求解 再证明 再求解 可得 再利用弧长公式计算即可.

    【详解】

    解:(1)如图,过 垂足分别为 连接

    四边形为矩形,

    由勾股定理可得:

    四边形为正方形,

    (2)如图,过 垂足分别为

    由(1)得:四边形为正方形,

    OA=2,∠OAB=15°,

    (3)如图,连接

    【点睛】

    本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形,正方形的判定与性质,垂径定理的应用,弧长的计算,掌握以上知识并灵活运用是解本题的关键.

    2、

    (1)135°

    (2)∠MOP-∠NOQ=30°,理由见解析

    (3)ss

    【分析】

    (1)先根据OP平分得到∠PON,然后求出∠BOP即可;

    (2)先根据题意可得∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,然后作差即可;

    (3)先求出旋转前OCOD的夹角,然后再求出OCOD第一次和第二次相遇所需要的时间,再设在OCOD第二次相遇前,当时,需要旋转时间为t,再分OEOC的左侧和OEOC的右侧两种情况解答即可.

    (1)

    解:∵OP平分∠MON

    ∴∠PON=MON=45°

    ∴三角板OPQ旋转的角:∠BOP=∠PON+∠NOB=135°.

    故答案是135°

    (2)

    解:∠MOP-∠NOQ=30°,理由如下:

    ∵∠MON=90°,∠POQ=60°

    ∴∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,

    ∴∠MOP-∠NOQ=90°-∠POQ -(60°-∠POQ)=30°.

    (3)

    解:∵射线OC平分,射线OD平分

    ∴∠NOC=45°,∠POD=30°

    ∴选择前OCOD的夹角为∠COD=∠NOC+∠NOP+∠POD=165°

    OCOD第一次相遇的时间为165°÷(2°+3°)=33秒,此时OB旋转的角度为33×5°=165°

    ∴此时OCOE的夹角165-(180-45-2×33)=96°

    OCOD第二次相遇需要时间360°÷(3°+2°)=72秒

    设在OCOD第二次相遇前,当时,需要旋转时间为t

    ①当OEOC的左侧时,有(5°-2°)t=96°-13°,解得:t=s

    ②当OEOC的右侧时,有(5°-2°)t=96°+13°,解得:t=s

    然后,①②都是每隔360÷(5°-2°)=120秒,出现一次这种现象

    CD第二次相遇需要时间72秒

    ∴在OCOD第二次相遇前,当时,、旋转时间t的值为ss

    【点睛】

    本题主要考查了角平分线的定义、平角的定义、一元一次方程的应用等知识点,灵活运用相关知识成为解答本题的关键.

    3、

    (1)见解析

    (2)

    【分析】

    (1)如图,连接OC,根据等腰三角形的性质可得∠CAB=∠ACO,即可得出∠FAC=∠ACO,可得AF//OC,根据平行线的性质可得∠AFC+∠OCF=180°,根据CFAF可得∠OCF=90°,即可得出CF是⊙O的切线;

    (2)利用AAS可证明△AFC≌△AEC,可得SAFC=SAEC,根据垂径定理可得CE=DE,可得SBCD=2SBCE,根据AB是直径可得∠ACB=90°,根据角的和差关系可得∠BCE=∠CAB,根据正弦的定义可得,可得BE=AB=,进而可得AE=,根据三角形面积公式即可得答案.

    (1)

    (1)如图,连接OC

    OA=OC

    ∴∠CAB=∠ACO

    ∠FAC=∠BAC

    ∴∠FAC=∠ACO

    AF//OC

    ∴∠AFC+∠OCF=180°,

    CFAF

    ∴∠OCF=90°,即OCCF

    CF是⊙O的切线.

    (2)

    在△AFC和△AEC中,

    ∴△AFC≌△AEC

    SAFC=SAEC

    AB是⊙O的直径,CDAB

    CE=DE

    SBCD=2SBCE

    ∵∠BCE+∠CBA=90°,∠CAB+∠CBA=90°,

    ∴∠BCE=∠CBA

    ∵sin∠CAB=

    ∴sin∠CAB=sin∠BCE=

    BE=AB=

    AE=

    ====

    故答案为:

    【点睛】

    本题考查切线的判定、圆周角定理、垂径定理、全等三角形的判定与性质及三角函数的定义,经过半径的外端点,且垂直于这条半径的直线是圆的切线;直径所对的圆周角是90°;垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧;在直角三角形中,锐角的正弦是锐角的对边与斜边的比值;熟练掌握相关性质及判定定理是解题关键.

    4、(1)(4,﹣1);(2)见解析;(3)见解析.

    【分析】

    (1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;

    (2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;

    (3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.

    【详解】

    (1)点B关于原点对称的点B′的坐标为(4,﹣1),

    故答案为:(4,﹣1);

    (2)如图所示,△A1B1C1即为所求.

    (3)如图所示,△A2B2C2即为所求.

    【点睛】

    本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.

    5、(1)见解析;(2)BC,90°,直径所对的圆周角是直角

    【分析】

    (1)过点O任作直线交圆于AB两点,再作AB的垂直平分线OM,直线MO交⊙O于点CD;连结ACBC即可;

    (2)根据线段垂直平分线的判定与性质得出AC=BC,根据圆周角定理得出∠ACB=90°即可.

    【详解】

    (1)①作直径AB

    ②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;

    ③作直线MO交⊙O于点CD

    ④连接ACBC

    所以△ABC就是所求的等腰直角三角形.

    (2)证明:连接MAMB

    MA=MBOA=OB

    MOAB的垂直平分线.

    AC=BC

    AB是直径,

    ∴∠ACB=90°(直径所对的圆周角是直角) .

    ∴△ABC是等腰直角三角形.

    故答案为:BC,90°,直径所对的圆周角是直角.

    【点睛】

    本题考查尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质是解题关键.

     

    相关试卷

    2021学年第24章 圆综合与测试精练: 这是一份2021学年第24章 圆综合与测试精练,共33页。

    初中数学第24章 圆综合与测试练习: 这是一份初中数学第24章 圆综合与测试练习,共29页。

    2021学年第24章 圆综合与测试练习题: 这是一份2021学年第24章 圆综合与测试练习题,共34页。试卷主要包含了点P关于原点O的对称点的坐标是,下列判断正确的个数有,将一把直尺等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map