|试卷下载
终身会员
搜索
    上传资料 赚现金
    难点详解沪科版九年级数学下册第24章圆章节训练练习题
    立即下载
    加入资料篮
    难点详解沪科版九年级数学下册第24章圆章节训练练习题01
    难点详解沪科版九年级数学下册第24章圆章节训练练习题02
    难点详解沪科版九年级数学下册第24章圆章节训练练习题03
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试一课一练

    展开
    这是一份初中数学沪科版九年级下册第24章 圆综合与测试一课一练,共34页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。

    沪科版九年级数学下册第24章圆章节训练

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,点ABC均在⊙O上,连接OAOBACBC,如果OAOB,那么∠C的度数为(   

    A.22.5° B.45° C.90° D.67.5°

    2、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是(    

    A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<2

    3、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为(   

    A.1cm B.2cm C.3cm D.4cm

    4、下列说法正确的个数有(   

    ①方程的两个实数根的和等于1;

    ②半圆是弧;

    ③正八边形是中心对称图形;

    ④“抛掷3枚质地均匀的硬币全部正面朝上”是随机事件;

    ⑤如果反比例函数的图象经过点,则这个函数图象位于第二、四象限.

    A.2个 B.3个 C.4个 D.5个

    5、如图,AB的直径,,劣弧BC的长是劣弧BD长的2倍,则AC的长为(   

    A. B. C.3 D.

    6、如图,ABBCCD分别与⊙O相切于EFG三点,且ABCDBO=3,CO=4,则OF的长为(  )

    A.5 B. C. D.

    7、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点为顶点的三角形的面积是,则下列图像能大致反映的函数关系的是(   

    A. B.

    C. D.

    8、如图,在RtABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DEAC边于点F,则图中阴影部分的面积为(   

    A.3 B.1 C. D.

    9、如图,直线x轴于点A,交y轴于点B,点Px轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(  )

    A. B.

    C. D.(﹣2,0)或(﹣5,0)

    10、在△ABC中,,点OAB中点.以点C为圆心,CO长为半径作⊙C,则⊙CAB的位置关系是(   

    A.相交 B.相切

    C.相离 D.不确定

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,一次函数的图像与x轴,y轴分别相交于点A,点B,将它绕点O逆时针旋转90°后,与x轴相交于点C,我们将图像过点ABC的二次函数叫做与这个一次函数关联的二次函数.如果一次函数的关联二次函数是),那么这个一次函数的解析式为______.

    2、如图,已知,外心为,分别以为腰向形外作等腰直角三角形,连接交于点,则的最小值是______.

    3、如图,在等腰直角中,已知,将绕点逆时针旋转60°,得到,连接,若,则________.

    4、两直角边分别为6、8,那么的内接圆的半径为____________.

    5、如图,在平行四边形中,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留

    三、解答题(5小题,每小题10分,共计50分)

    1、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.

    已知:⊙O.

    求作:⊙O的内接等腰直角三角形ABC.

    作法:如图,

    ①作直径AB

    ②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;

    ③作直线MO交⊙O于点CD

    ④连接ACBC

    所以△ABC就是所求的等腰直角三角形.

    根据小明设计的尺规作图过程,解决下面的问题:

    (1)使用直尺和圆规,补全图形;(保留作图痕迹)

    (2)完成下面的证明.

    证明:连接MAMB

    MA=MBOA=OB

    MOAB的垂直平分线.

    AC=                 

    AB是直径,

    ∴∠ACB=        (                        ) (填写推理依据) .

    ∴△ABC是等腰直角三角形.

    2、如图,△ABC内接于⊙OD是⊙O的直径AB的延长线上一点,∠DCB=∠OAC.过圆心OBC的平行线交DC的延长线于点E

    (1)求证:CD是⊙O的切线;

    (2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.

    3、新定义:如图①,已知,在内部画射线OC,得到三个角,分别为.若这三个角中有一个角是另外一个角的2倍,则称射线OC的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)

    (阅读理解)(1)角的平分线______这个角的“幸运线”;(填“是”或“不是”)

    (初步应用)(2)如图①,,射线OC的“幸运线”,则的度数为______;(直接写出答案)

    (解决问题)

    (3)如图②,已知,射线OMOA出发,以每秒10°的速度绕O点顺时针旋转,同时,射线ONOB出发,以每秒15°的速度绕O点顺时针旋转,设运动的时间为t.若OMONOB三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求运动的时间t的值.

    (实际运用)

    (4)周末,小丽帮妈妈到附近的“中通快递”网点取包裹,出家门时小丽看了看时钟,恰好是下午3点整,取好包裹回到家时,小丽再看了看时钟,还没有到下午3点半,但此时分针与时针恰好重合.问小丽帮妈妈取包裹用了多少分钟?

    4、阅读以下材料,并按要求完成相应的任务:

    从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:

    如下图1,在正方形中,以为顶点的边分别交于两点.易证得

    大致证明思路:如图2,将绕点顺时针旋转,得到,由可得三点共线,,进而可证明,故

     

    任务:

    如图3,在四边形中,,以为顶点的边分别交于两点.请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.

    5、如图,在中,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且.将线段AE绕点A逆时针旋转90°,得到线段AF,连接BEFE,连接FC并延长交BE于点G

    (1)依题意补全图形;

    (2)求的度数;

    (3)连接GA,用等式表示线段GAGBGC之间的数量关系,并证明.

     

    -参考答案-

    一、单选题

    1、B

    【分析】

    根据同弧所对的圆周角是圆心角的一半即可得.

    【详解】

    解:∵

    故选:B.

    【点睛】

    题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.

    2、A

    【分析】

    点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.

    【详解】

    解:∵⊙O的半径为4,点P 在⊙O外部,

    OP需要满足的条件是OP>4,

    故选:A

    【点睛】

    此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.

    3、B

    【分析】

    连接OB,过点OOCAB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.

    【详解】

    解:连接OB,过点OOCAB于点D,交⊙O于点C,如图所示:

    AB=8cm,

    BD=AB=4(cm),

    由题意得:OB=OC==5cm,

    RtOBD中,OD=(cm),

    CD=OC-OD=5-3=2(cm),

    即水的最大深度为2cm,

    故选:B.

    【点睛】

    本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.

    4、B

    【分析】

    根据所学知识对五个命题进行判断即可.

    【详解】

    1、,故方程无实数根,故本命题错误;

    2、圆上任意两点间的部分叫做圆弧,半圆也是,故本命题正确;

    3、八边形绕中心旋转180°以后仍然与原图重合,故本命题正确;

    4、抛硬币无论抛多少,出现正反面朝上都是随机事件,故抛三枚硬币全部正面朝上也是随机事件,故本命题正确;

    5、反比例函数的图象经过点 (1,2) ,则,它的函数图像位于一三象限,故本命题错误

    综上所述,正确个数为3

    故选B

    【点睛】

    本题考查一元二次函数判别式、弧的定义、中心对称图形判断、随机事件理解、反比例函数图像,掌握这些是本题关键.

    5、D

    【分析】

    连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得

    【详解】

    如图,连接

     

    是直角三角形,且

    是等边三角形

    是直径,

    故选D

    【点睛】

    本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.

    6、D

    【分析】

    连接OFOEOG,根据切线的性质及角平分线的判定可得OB平分OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.

    【详解】

    解:连接OFOEOG

    AB、BC、CD分别与相切,

    ,且

    OB平分OC平分

    故选:D.

    【点睛】

    题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.

    7、A

    【分析】

    设正六边形的边长为1,当上时,过 求解此时的函数解析式,当上时,延长交于点 并求解此时的函数解析式,当上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:上的图象与上的图象是对称的,上的图象与上的图象是对称的,从而可得答案.

    【详解】

    解:设正六边形的边长为1,当上时,

    上时,延长交于点

    同理:

    为等边三角形,

    上时,连接

    由正六边形的性质可得:

    由正六边形的对称性可得:

    由正六边形的对称性可得:上的图象与上的图象是对称的,

    上的图象与上的图象是对称的,

    所以符合题意的是A,

    故选A

    【点睛】

    本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.

    8、D

    【分析】

    根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.

    【详解】

    解:如图,设相交于点

    旋转,

    是等边三角形,

    阴影部分的面积为

    故选D

    【点睛】

    本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.

    9、C

    【分析】

    由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PDABPD=1,根据相似三角形的性质即可得到结论.

    【详解】

    解:∵直线x轴于点A,交y轴于点B

    ∴令x=0,得y=-3,令y=0,得x=-4,

    A(-4,0),B(0,-3),

    OA=4,OB=3,

    AB=5,

    设⊙P与直线AB相切于D

    连接PD

    PDABPD=1,

    ∵∠ADP=∠AOB=90°,∠PAD=∠BAO

    ∴△APD∽△ABO

    AP=

    OP= OP=

    PP

    故选:C.

    【点睛】

    本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.

    10、B

    【分析】

    根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断的切线,进而可得⊙CAB的位置关系

    【详解】

    解:连接,

    ,点OAB中点.

    CO为⊙C的半径,

    的切线,

    CAB的位置关系是相切

    故选B

    【点睛】

    本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.

    二、填空题

    1、

    【分析】

    由题意可知二次函数与坐标轴的三个交点坐标为(0,k),(1,0),(-k,0),将其代入抛物线)即可得mk的二元一次方程组,即可解出,故这个一次函数的解析式为

    【详解】

    一次函数y轴的交点为(0,k),与x轴的交点为(1,0)

    O点逆时针旋转90°后,与x轴的交点为(-k,0)

    即(0,k),(1,0),(-k,0)过抛物线

    代入

    整理得

    解得k=3或k=-1(舍)

    k=3代入

    故方程组的解为

    则一次函数的解析式为

    故答案为:

    【点睛】

    本题考查了一次函数和二次函数的图象及其性质,解二元一次方程组,结合旋转的性质以及图象得出抛物线与坐标轴的三个交点坐标是解题的关键.

    2、

    【分析】

    是等腰直角三角形,得到,根据全等三角形的性质得到,求得在以为直径的圆上,由的外心为,得到,如图,当时,的值最小,解直角三角形即可得到结论.

    【详解】

    解:是等腰直角三角形,

    中,

    在以为直径的圆上,

    的外心为

    如图,当时,的值最小,

    的最小值是

    故答案为:

    【点睛】

    本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.

    3、

    【分析】

    如图连接并延长,过点交于点,由题意可知为等边三角形,,在;在计算求解即可.

    【详解】

    解:如图连接并延长,过点交于点

    由题意可知为等边三角形

     

    故答案为:

    【点睛】

    本题考查了旋转的性质,等边三角形,勾股定理,含的直角三角形等知识.解题的关键在于做辅助线构造直角三角形.

    4、5

    【分析】

    直角三角形外接圆的直径是斜边的长.

    【详解】

    解:由勾股定理得:AB==10,

    ∵∠ACB=90°,

    AB是⊙O的直径,

    ∴这个三角形的外接圆直径是10,

    ∴这个三角形的外接圆半径长为5,

    故答案为:5.

    【点睛】

    本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等.

    5、

    【分析】

    过点C于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可.

    【详解】

    解:过点C于点H

    在平行四边形中,

    平行四边形的面积为:

    图中黑色阴影部分的面积为:

    故答案为:

    【点睛】

    本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键.

    三、解答题

    1、(1)见解析;(2)BC,90°,直径所对的圆周角是直角

    【分析】

    (1)过点O任作直线交圆于AB两点,再作AB的垂直平分线OM,直线MO交⊙O于点CD;连结ACBC即可;

    (2)根据线段垂直平分线的判定与性质得出AC=BC,根据圆周角定理得出∠ACB=90°即可.

    【详解】

    (1)①作直径AB

    ②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;

    ③作直线MO交⊙O于点CD

    ④连接ACBC

    所以△ABC就是所求的等腰直角三角形.

    (2)证明:连接MAMB

    MA=MBOA=OB

    MOAB的垂直平分线.

    AC=BC

    AB是直径,

    ∴∠ACB=90°(直径所对的圆周角是直角) .

    ∴△ABC是等腰直角三角形.

    故答案为:BC,90°,直径所对的圆周角是直角.

    【点睛】

    本题考查尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质是解题关键.

    2、

    (1)见解析

    (2)3,2

    【分析】

    (1)由等腰三角形的性质与已知条件得出,∠OCA=∠DCB,由圆周角定理可得∠ACB=90°,进而得到∠OCD=90°,即可得出结论;

    (2)根据平行线分线段成比例定理得到,设BD=2x,则OB=OC=3xOD=OB+BD=5x,在RtOCD中,根据勾股定理求出x=1,即⊙O的半径为3,由平行线的性质得到∠OCB=∠EOC,在RtOCE中,可求得tan∠EOC=2,即tan∠OCB=2.

    (1)

    证明:∵OAOC

    ∴∠OAC=∠OCA

    ∵∠DCB=∠OAC

    ∴∠OCA=∠DCB     

    AB是⊙O的直径,

    ∴∠ACB=90°,

    ∴∠OCA+∠OCB=90°,

    ∴∠DCB+∠OCB=90°,

    即∠OCD=90°,

    OCDC     

    OC是⊙O的半径,

    CD是⊙O的切线;

    (2)

    OEBC

    CD=4,CE=6,

    BD=2x,则OB=OC=3xOD=OB+BD=5x

    OCDC

    ∴△OCD是直角三角形,

    RtOCD中,OC2+CD2=OD2

    ∴(3x2+42=(5x2

    解得,x=1,

    OC=3x=3,即⊙O的半径为3,

    BCOE

    ∴∠OCB=∠EOC

    RtOCE中,tanEOC=

    ∴tan∠OCB=tan∠EOC=2.

    【点睛】

    本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键.

    3、(1)是;(2)16°或24°或32°;(3)2或;(4)

    【分析】

    (1)根据幸运线定义即可求解;

    (2)分3种情况,根据幸运线定义得到方程求解即可;

    (3)根据幸运线定义得到方程求解即可;

    (4)利用时针1分钟走,分针1分钟走,可解答问题.

    【详解】

    解:(1)一个角的平分线是这个角的“幸运线”;

    故答案为:是;

    (2)①设∠AOC=x,则∠BOC=2x

    由题意得,x+2x=48°,解得x=16°,

    ②设∠AOC=x,则∠BOC=x

    由题意得,x+x=48°,解得x=24°,

    ③设∠AOC=x,则∠BOC=x

    由题意得,x+x=48°,解得x=32°,

    故答案为:16°或24°或32°;

    (3)OB是射线OMON的幸运线,

    则∠BOM=MON,即50-10t=(50-10t+15t),解得t=2;

    BOM=MON,即50-10t=(50-10t+15t),解得t=

    BOM=MON,即50-10t=(50-10t+15t),解得t=

    故t的值是2或

    (4)时针1分钟走,分针1分钟走

    设小丽帮妈妈取包裹用了x分钟,

    则有0.5x+3×30=6x,解得:x=

    【点睛】

    本题考查了旋转的性质,幸运线定义,学生的阅读理解能力及知识的迁移能力.理解“幸运线”的定义是解题的关键.

    4、成立,证明见解析

    【分析】

    根据阅读材料将△ADF旋转120°再证全等即可求得EF= BE+DF

    【详解】

    解:成立.

    证明:将绕点顺时针旋转,得到

    三点共线,

    【点睛】

    本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键.

    5、

    (1)见解析;

    (2)

    (3)

    【分析】

    (1)根据题意补全图形即可;

    (2)根据旋转的性质可得,进而证明,可得,根据角度的转换可得,进而根据三角形的外角性质即可证明

    (3)过点,证明,进而根据勾股定理以及线段的转换即可得到

    (1)

    如图,

    (2)

    将线段AE绕点A逆时针旋转90°,得到线段AF

    ,

    ,

    (3)

    证明如下,如图,过点

    ,

    【点睛】

    本题考查了旋转的性质,三角形全等的性质与判定,勾股定理,等腰三角形的性质,掌握旋转的性质是解题的关键.

     

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试课后复习题: 这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后复习题,共32页。

    初中数学沪科版九年级下册第24章 圆综合与测试巩固练习: 这是一份初中数学沪科版九年级下册第24章 圆综合与测试巩固练习,共35页。试卷主要包含了在圆内接四边形ABCD中,∠A等内容,欢迎下载使用。

    2021学年第24章 圆综合与测试精练: 这是一份2021学年第24章 圆综合与测试精练,共33页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map