初中数学沪科版九年级下册第26章 概率初步综合与测试课时训练
展开
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课时训练,共18页。试卷主要包含了下列说法正确的是,下列事件中,属于必然事件的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在0.15和0.45,则布袋中白色球的个数可能是( )A.24 B.18 C.16 D.62、下列事件中,是必然事件的是( )A.同位角相等B.打开电视,正在播出特别节目《战疫情》C.经过红绿灯路口,遇到绿灯D.长度为4,6,9的三条线段可以围成一个三角形.3、下列事件中,属于必然事件的是( )A.小明买彩票中奖 B.在一个只有红球的盒子里摸球,摸到了白球C.任意抛掷一只纸杯,杯口朝下 D.三角形两边之和大于第三边4、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是( )A. B. C. D.5、下列说法正确的是( )A.“买中奖率为的奖券10张,中奖”是必然事件B.“汽车累积行驶10000km,从未出现故障”是不可能事件C.气象局预报说“明天的降水概率为70%”,意味着明天一定下雨D.“经过有交通信号灯的路口,遇到红灯”是随机事件6、在一个不透明的袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,从袋中任意摸出一个球,是黑球的概率为( )A. B. C. D.7、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为( )A. B. C. D.8、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是( )A. B. C. D.19、下列事件中,属于必然事件的是( )A.射击运动员射击一次,命中10环B.打开电视,正在播广告C.投掷一枚普通的骰子,掷得的点数小于10D.在一个只装有红球的袋中摸出白球10、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、从1、-1、0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是_________.2、一个不透明的袋子里有3个红球和5个白球,每个球除颜色外都相同,从袋中任意摸出一个球,是红球的可能性_________(填“大于”“小于”或“等于”)是白球的可能性.3、口袋中有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1球,摸出黑球的概率为_______.4、第24届冬季奥林匹克运动会将于2022年2月4日在北京开幕,小健通过统计数据了解到:从2002年到2018年的五届冬奥会上,中国队每届比赛均有金牌入账,共斩获了13枚金牌,于是,小健对同学们说:“2022年北京冬奥会中国队获得2枚以上金牌的可能性大小是100%”.你认为小健的说法______(填“合理”或“不合理”)理由是______.5、有两个正方体的积木块,如图所示.下面是小怡投掷某块积木200次的情况统计表:灰色的面朝上白色的面朝上32次168次根据表中的数据推测,小怡最有可能投掷的是______号积木.三、解答题(5小题,每小题10分,共计50分)1、一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.甲从口袋中随机摸取一个小球,记下标号m,然后放回,再由乙从口袋中随机摸取一个小球,记下标号n,组成一个数对(m,n).(1)用列表法或画树状图法,写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各摸取一个小球,小球上标号之和为奇数则甲赢,小球上标号之和为偶数则乙赢.你认为这个游戏规则公平吗?请说明理由.2、2021年5月26日,长春国际马拉松开赛,小红和小雨参加了该赛事的志愿者服务工作,被随机分配到A“半程马拉松”,B“全程马拉松”,C“五公里”三个项目组.(1)小雨被分配到C“五公里”项目组的概率为 ;(2)用画树状图(或列表)的方法,求小红和小雨被分到同一组的概率.3、某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图:请结合图中所给信息,解答下列问题(1)本次调查的学生共有 人;(2)扇形统计图中表示D选项的扇形圆心角的度数是 ,并把条形统计图补充完整;(3)七年级一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.4、数字“122”是中国道路交通事故报警电话.为推进“文明交通行动计划”,公安部将每年的12月2日定为“交通安全日”.班主任决定从4名同学(小迎,小冬,小奥,小会)中通过抽签的方式确定2名同学去参加宣传活动.抽签规则:将4名同学的姓名分别写在4张完全相同的卡片正面,把4张卡片的背面朝上,洗匀后放在桌子上,班主任先从中随机抽取一张卡片,记下名字,再从剩余的3张卡片中随机抽取一张,记下名字.(1)“小冬被抽中”是________事件,“小红被抽中”是________事件(填“不可能”、“必然”、“随机”),第一次抽取卡片抽中小会的概率是________;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小奥被抽中的概率.5、已知关于x的一元二次方程x2+bx+c=0.(1)c=2b﹣1时,求证:方程一定有两个实数根.(2)有甲、乙两个不透明的布袋,甲袋中装有3个除数字外完全相同的小球,分别标有数字1,2,3,乙袋中装有4个除数字外完全相同的小球,分别标有数字1,2,3,4,从甲袋中随机抽取一个小球,记录标有的数字为b,从乙袋中随机抽取一个小球,记录标有的数字为c,利用列表法或者树状图,求b、c的值使方程x2+bx+c=0有两个相等的实数根的概率. -参考答案-一、单选题1、A【分析】根据频率之和为1计算出白球的频率,然后再根据“数据总数×频率=频数”,算白球的个数即可.【详解】解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,∴摸到白球的频率为1-0.15-0.45=0.40,∴口袋中白色球的个数可能是60×0.40=24个.故选A.【点睛】本题考查了由频率估计概率,大量反复试验下频率稳定值即概率.根据频率之和为1计算出摸到白球的频率是解答本题的关键.2、D【分析】根据必然事件的概念即可得出答案.【详解】解:∵同位角不一定相等,为随机事件,∴A选项不合题意,∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,∴B选项不合题意,∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件, ∴C选项不合题意,∵4+6>9,∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.∴D选项符合题意,故选:D.【点睛】本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念.3、D【分析】根据事件发生的可能性大小判断即可.【详解】解;A、小明买彩票中奖是随机事件,不符合题意;B、在一个只有红球的盒子里摸球,摸到了白球是不可能事件,不符合题意;C、任意抛掷一只纸杯,杯口朝下是随机事件,不符合题意;D、三角形两边之和大于第三边是必然事件,符合题意;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、A【分析】首先利用列举法可得所有等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.【详解】解:∵抛掷两枚质地均匀的硬币,两枚硬币落地后的所有等可能的结果有:正正,正反,反正,反反,∴正面都朝上的概率是: .故选A.【点睛】本题考查了列举法求概率的知识.此题比较简单,注意在利用列举法求解时,要做到不重不漏,注意概率=所求情况数与总情况数之比.5、D【分析】根据随机事件的定义,对选项中的事件进行判断即可.【详解】解:A.“买中奖率为的奖券10张,中奖”是随机事件,故原选项判断错误,不合题意;B.“汽车累积行驶10000km,从未出现故障”是随机事件,故原选项判断错误,不合题意;C.“明天的降水概率为70%”,是说明天降水的可能性是70%,是随机事件,故原选项判断错误,不合题意;D.“经过有交通信号灯的路口,遇到红灯”是随机事件,故原选项判断正确,符合题意.故选:D【点睛】本题考查了“不可能事件、随机事件、必然事件”的判断,熟知三种事件的定义并根据实际情况准确判断是解题关键.6、C【分析】从中任意摸出1个球共有3+4=7种结果,其中摸出的球是黑球的有4种结果,直接根据概率公式求解即可.【详解】解:∵装有7个只有颜色不同的球,其中4个黑球,∴从布袋中随机摸出一个球,摸出的球是黑球的概率=.故选:C.【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.7、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率.【详解】解:∵共有5个球,其中红球有2个,∴P(摸到红球)=,故选:A.【点睛】此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.8、C【分析】先判断出矩形、菱形、等边三角形、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可.【详解】解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,共3个;则P(中心对称图形)=;故选:C.【点睛】本题考查中心对称图形的识别,列举法求概率,掌握中心对称图形的识别,列举法求概率是解题关键.9、C【分析】根据事件发生的可能性大小判断即可.【详解】解:A、射击运动员射击一次,命中10环,是随机事件;B、打开电视,正在播广告,是随机事件;C、投掷一枚普通的骰子,掷得的点数小于10,是必然事件;D、在一个只装有红球的袋中摸出白球,是不可能事件;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、B【分析】直接根据题意得出恰有三个面被涂色的有8个,再利用概率公式求出答案.【详解】解:由题意可得:小立方体一共有27个,恰有三个面被涂色的为棱长为3的正方体顶点处的8个小正方体;故取得的小正方体恰有三个面被涂色.的概率为.故选:B.【点睛】此题主要考查了概率公式的应用,正确得出三个面被涂色.小立方体的个数是解题关键.二、填空题1、【分析】根据题意列表得出所有等可能的情况数,找出刚好在坐标轴上的点个数,即可求出所求的概率.【详解】解:列表得: -110-1---(1,-1)(0,-1)1(-1,1)---(0,1)0(-1,0)(1,0)---所有等可能的情况有6种,其中该点刚好在坐标轴上的情况有4种,所以该点在坐标轴上的概率.故答案为:.【点睛】本题考查列表法与树状图法和点的坐标特征,注意掌握通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.2、小于【分析】根据“哪种球的数量大哪种球的可能性就大”直接确定答案即可.【详解】解:∵袋子里有3个红球和5个白球,∴红球的数量小于白球的数量,∴从中任意摸出1只球,是红球的可能性小于白球的可能性.故答案为:小于.【点睛】本题考查了可能性的大小,可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.3、【分析】直接利用概率公式求解即可求得答案.【详解】解:∵一个不透明的袋子中只装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别,∴随机从袋中摸出1个球,则摸出黑球的概率是:.故答案为:.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4、不合理 获得金牌是随机事件 【分析】随机事件是指可能发生也可能不发生的事件,根据随机事件的定义进行解答即可.【详解】解:小健的说法不合理,因为获得金牌是随机事件,故答案为:不合理,获得金牌是随机事件.【点睛】本题考查了随机事件的应用,能理解随机事件的定义是解此题的关键.5、②【分析】计算出①号积木、②号积木朝上的面为白色、为灰色的概率,再求出小怡掷200次积木的实验频率,进行判断即可.【详解】①号积木由于三面灰色,三面白色,因此随机掷1次,朝上的面是白色、灰色的可能性都是,②号积木由于一面灰色,五面白色,因此随机掷1次,朝上的面是灰色的可能性都是,是白色的可能性为,由表格中的数据可得,小怡掷200次积木得到朝上的面为灰色的频率为,白色的频率为,故选择的是②号积木,理由:小怡掷200次积木的实验频率接近于②号积木相应的概率.故答案为②【点睛】本题主要考查频率与概率的关系,解题的关键是正确理解实验频率与概率的关系.三、解答题1、(1)见解析;(2)这个游戏不公平,理由见解析【分析】(1)根据题意画出树状图进行求解即可;(2)根据(1)所画树状图,先得到所有的等可能性的结果数,然后分别得到小球标号之和为奇数和偶数的结果数,最后分别求出甲乙两人赢的概率即可得到答案.【详解】解:(1)列树状图如下所示:由树状图可知(m,n)所有可能出现的结果为:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3);(2)由(1)得一共有9种等可能性的结果数,其中小球上标号之和为奇数的结果数有(1,2),(2,1),(2,3),(3,2),4种等可能性的结果数,其中小球上标号之和为偶数的结果数有(1,1),(1,3),(2,2),(3,1),(3,3),5种等可能性的结果数,∴甲赢的概率为,乙赢的概率为,∴这个游戏不公平.【点睛】本题主要考查了画树状图和游戏的公平性,解题的关键在于能够熟练掌握画树状图的方法.2、(1);(2)【分析】(1)根据概率公式即可求解;(2)由题画出树状图,用小红和小雨被分到同一组的结果数比总的结果数即可得出答案.【详解】(1)∵小雨可分配到A、B、C三个项目组,∴小雨被分配到C“五公里”项目组的概率为,故答案为:;(2)画出树状图如下所示:∴小红和小雨被分到同一组的有3种结果,总的有9种,∴小红和小雨被分到同一组的概率为.【点睛】本题考查用列表格或树状图求概率,掌握树状图的画法和概率的求法是解题的关键.3、(1)100;(2)144°,见解析;(3)见解析,【分析】(1)根据器乐的占比和人数进行求解即可;(2)用360°×(D选项的人数)÷总人数即可得D选项的扇形圆心角度数,然后求出B选项的人数,补全统计图即可;(3)先画树状图得到所有的等可能性的结果数,然后找到恰好是甲、乙的结果数,利用概率公式求解即可.【详解】解:(1)由题意得:本次调查的学生共有:30÷30%=100(人);故答案为:100;(2)表示D选项的扇形圆心角的度数是,喜欢B类项目的人数有:100-30-10-40=20(人),补全条形统计图如图1所示:故答案为:144°;(3)画树形图如图2所示:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,树状图或列表法求解概率,解题的关键在于能够正确读懂统计图.4、(1)随机;随机;(2)【分析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;(2)列举出所有情况,看所求的情况占总情况的多少即可.(1)解:“小冬被抽中”是随机事件,“小红被抽中”是随机事件,第一次抽取卡片抽中小会的概率是;(2)解:根据题意可列表如下:(A表示小迎,B表示小冬,C表示小奥,D表示小会)由表可知,共有12种等可能结果,其中小奥被抽中(含有C)的有6种结果,所以小月被选中的概率=.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏地列出所有可能的结果,适用于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.5、(1)证明见解析;(2).【分析】(1)把c=2b﹣1代入x2+bx+c=0.利用一元二次方程根的判别式即可得答案;(2)根据方程x2+bx+c=0有两个相等的实数根,利用判别式可得b与c的关系,画出树状图,得出所有可能情况数及符合b与c的关系的情况数,利用概率公式即可得答案.【详解】(1)∵c=2b﹣1,∴x2+bx+c=x2+bx+2b=0.∵==≥0,∴方程一定有两个实数根.(2)∵方程x2+bx+c=0有两个相等的实数根,∴=0,∴,画树状图如下:由树状图可知:所有可能情况数为12种,符合的情况数为2种,∴b、c的值使方程x2+bx+c=0有两个相等的实数根的概率为=.【点睛】本题考下一元二次方程的根的判别式及树状图法或列表法求概率,对于一元二次方程(),根的判别式为△=,当△>0时,方程有两个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根;熟练掌握根的判别式及概率公式是解题关键.
相关试卷
这是一份沪科版九年级下册第26章 概率初步综合与测试综合训练题,共19页。试卷主要包含了下列说法中正确的是,下列说法错误的是,把6张大小,下列判断正确的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试课后练习题,共20页。试卷主要包含了下列事件中是必然事件的是,下列说法正确的是.,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试随堂练习题,共20页。试卷主要包含了一个不透明的口袋里有红,不透明的布袋内装有形状等内容,欢迎下载使用。