数学九年级下册第26章 概率初步综合与测试练习题
展开
这是一份数学九年级下册第26章 概率初步综合与测试练习题,共18页。试卷主要包含了下列事件中,是必然事件的是,不透明的布袋内装有形状,下列说法正确的是.,下列事件中,属于必然事件的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件是必然事件的是( )A.同圆中,圆周角等于圆心角的一半B.投掷一枚均匀的硬币100次,正面朝上的次数为50次C.参加社会实践活动的367个同学中至少有两个同学的生日是同一天D.把一粒种子种在花盆中,一定会发芽2、下列事件中,是必然事件的是( )A.如果a2=b2,那么a=bB.车辆随机到达一个路口,遇到红灯C.2021年有366天D.13个人中至少有两个人生肖相同3、若随意向如图所示的正方形内抛一粒石子,则石子落在阴影部分的概率是( )A.1 B.1 C. D.14、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中.不断重复这一过程,获得数据如下:摸球的次数200300400100016002000摸到黑球的频数14218626066810641333摸到黑球的频率0.71000.62000.65000.66800.66500.6665该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有( )个.A.4 B.3 C.2 D.15、下列事件中,是必然事件的是( )A.刚到车站,恰好有车进站B.在一个仅装着白乒乓球的盒子中,摸出黄乒乓球C.打开九年级上册数学教材,恰好是概率初步的内容D.任意画一个三角形,其外角和是360°6、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为( )A. B. C. D.7、下列说法正确的是( ).A.“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件B.“打开电视机,正在播放乒乓球比赛”是必然事件C.“面积相等的两个三角形全等”是不可能事件D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次8、 “2022年春节期间,中山市会下雨”这一事件为( )A.必然事件 B.不可能事件 C.确定事件 D.随机事件9、下列事件中,属于必然事件的是( )A.任意购买一张电影票,座位号是奇数B.抛一枚硬币,正面朝上C.五个人分成四组,这四组中有一组必有2人D.打开电视,正在播放动画片10、布袋内装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后不放回,再随机摸出一个球,则两次摸出的球都是白球的概率是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3,绿色卡片两张,标号分别为1,2,若从五张卡片中任取两张,则两张卡片的颜色不同且标号之和小于4的概率为______.2、在一个不透明的布袋中,黄色、红色的乒乓球共10个,这些球除颜色外其他都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中红色球的个数很可能是___个.3、某商场举办有奖购物活动,购货满100元者发兑奖券一张,每张奖券获奖的可能性相同.在100张奖券中,设一等奖5个,二等奖10个,三等奖20个.若小李购货满100元,则她获奖的概率为 _____.4、在一个不透明的袋子里装有红球和白球共30个,这些球除颜色外其余都相同.小明通过多次试验发现,摸出白球的频率稳定在0.3左右,则袋子里可能有 _____个红球.5、社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里,装有20个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后,从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象,如图所示,经分析可以推断“摸出黑球”的概率约为_______.三、解答题(5小题,每小题10分,共计50分)1、一个不透明的袋中装有2个红球、1个白球,这些球除颜色外,没有任何其他区别.有如下两个活动:活动1:从袋中随机摸出一个球,记录下颜色,然后从袋中剩余的球中再随机摸出一个球,摸出的两个球都是红球的概率记为;活动2:从袋中随机摸出一个球,记录下颜色,然后把这个球放回袋中并摇匀,重新从袋中随机摸出一个球,两次摸出的球都是红球的概率记为.请你猜想,的大小关系,并用画树状图或列表的方法列出所有可能的结果,验证你的猜想.2、不透明的口袋里装有2个红球和2个黄球(除颜色不同外,其它都相同).现进行两次摸球活动,第一次随机摸出一个小球后不放回,第二次再随机摸出一个小球,请用树状图或列表法,求两次摸出的都是红球的概率.3、现有A、B两个不透明的袋子,A袋中的两个小球分别标记数字1,2;B袋中的三个小球分别标记数字3,4,5.这五个小球除标记的数字外,其余完全相同.分别将A、B两个袋子中的小球摇匀,然后小明从A、B袋中各随机摸出一个小球,请利用画树状图或列表的方法,求小明摸出的这两个小球标记的数字之和为5的概率.4、一个不透明的盒子里装有5个黑球,2个白球和若干个黄球.它们除颜色不同外其余都相同,从中任意摸出1个球,是白球的概率为.(1)求盒子里有几个黄球?(2)小张和小王将盒子中的黑球取出4个,利用剩下的球进行摸球游戏.他们约定:先摸出1个球后不放回,再摸出1个球,若这两个球中有黄球,则小张胜,否则小王胜、你认为这个游戏公平吗?请用列表或画树状图说明理由.5、一个不透明的口袋中装有2个红球和1个白球,小球除颜色外其余均相同.(1)从口袋中随机摸出一个小球,小球的颜色是白色的概率是 ;(2)从口袋中随机摸出一个小球,记下颜色后放回,再随机摸出一个小球.请用画树状图(或列表)的方法,求两次摸出的小球颜色相同的概率. -参考答案-一、单选题1、C【分析】直接利用随机事件以及不可能事件、必然事件的定义分析即可得答案.【详解】A、同圆中,圆周角等于圆心角的一半,是随机事件,不符合题意;B、投掷一枚均匀的硬币100次,正面朝上的次数为50次,是随机事件,不符合题意;C、参加社会实践活动的367个同学中至少有两个同学的生日是同一天,是必然事件,符合题意;D、把一粒种子种在花盆中,一定会发芽,是随机事件,不符合题意.故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、D【分析】在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.【详解】解:如果a2=b2,那么,原说法是随机事件,故A不符合题意;车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;2021年是平年,有365天,原说法是不可能事件,故C不符合题意;13个人中至少有两个人生肖相同,是必然事件,故D符合题意,故选:D.【点睛】本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.3、A【分析】设正方形ABCD的边长为a,然后根据石子落在阴影部分的概率即为阴影部分面积与正方形面积的比,由此进行求解即可.【详解】解:如图所示,设正方形ABCD的边长为a,∵四边形ABCD是正方形,∴∠C=90°,∴ ,∴,∴石子落在阴影部分的概率是,故选A.【点睛】本题主要考查了几何概率,正方形的性质,扇形面积公式,解题的关键在于能够根据题意得到石子落在阴影部分的概率即为阴影部分面积与正方形面积的比.4、C【分析】该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为0.667,继而得摸出绿球的概率为0.333,求出袋子中球的总个数即可得出答案.【详解】解:该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,估计摸出黑球的概率为0.667,则摸出绿球的概率为,袋子中球的总个数为,由此估出黑球个数为,故选:C.【点睛】本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.5、D【分析】根据必然事件的概念“在一定条件下,有些事件必然会发生,这样的事件称为必然事件”可判断选项D是必然事件;根据不可能事件的概念“有些事件必然不会发生,这样的事件称为不可能事件”可判断选项B是不可能事件;根据随机事件的概念“在一定条件下,可能发生也可能不发生的事件,称为随机事件”判断选项A、C是随机事件,即可得.【详解】解:A、刚到车站,恰好有车进站是随机事件;B、在一个仅装着白乒乓球的盒子中,摸出黄乒乓球是不可能事件;C、打开九年级上册数学教材,恰好是概率初步的内容是随机事件;D、任意画一个三角形,其外角和是360°是必然事件;故选D.【点睛】本题考查了必然事件,解题的关键是熟记必然事件的概念,不可能事件的概念和随机事件的概念.6、B【分析】由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案.【详解】解:∵在不透明的布袋中装有1个白球,2个红球,3个黑球,∴从袋中任意摸出一个球,摸出的球是红球的概率是:.故选:B.【点睛】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.7、A【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;故选:A.【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:“2022年年春节期间,中山市会下雨”这一事件为随机事件,故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、任意购买一张电影票,座位号是奇数是随机事件;B、抛一枚硬币,正面朝上是随机事件;C、五个人分成四组,这四组中有一组必有2人是必然事件;D、打开电视,正在播放动画片是随机事件;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、B【分析】先画出树状图,再根据概率公式即可完成.【详解】所画树状图如下: 事件所有可能的结果数有6种,两次摸出的球都是白球的可能结果数有2种,则两次摸出的球都是白球的概率是:故选:B【点睛】本题考查了利用树状图或列表法求概率,会用树状图或列表法找出所有事件的可能结果及某事件发生的可能结果是关键.二、填空题1、【分析】从五张卡片中任取两张的所有可能情况,用列举法求得有10种情况,其中两张卡片的颜色不同且标号之和小于4的有3种情况,从而求得所求事件的概率.【详解】从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1绿1,红1绿2,红2红3,红2绿1,红2绿2,红3绿1,红3绿2,绿1绿2.其中两张卡片的颜色不同且标号之和小于4的有3种情况:红1绿1,红1绿2,红2绿1.故所求的概率为P=;故答案为:.【点睛】本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想,属于基础题.2、4【分析】设出黄球的个数,根据黄球的频率求出黄球的个数即可解答.【详解】设黄球的个数为x,∵共有黄色、红色的乒乓球10个,黄球的频率稳定在60%,∴,解得:,∴布袋中红色球的个数很可能是(个).故答案为:4.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据黄球的频率得到相应的等量关系,列出方程.3、##【分析】根据题意在100张奖券中,奖项设置共有35个奖,根据概率公式求解即可【详解】解:根据题意在100张奖券中,奖项设置共有35个奖,若小李购货满100元,则她获奖的概率为故答案为:【点睛】本题考查了概率公式求概率,是解题的关键.4、21【分析】根据大量反复试验下频率的稳定值即为概率,即可用球的总数乘以白球的频率,可求得白球数量,从而得到红球的熟练.【详解】解:∵小明通过多次试验发现,摸出白球的频率稳定在0.3左右,∴白球的个数=30×0.3=9个,∴红球的个数=30-9=21个,故答案为:21.【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.5、【分析】根据“摸出黑球的频率”与“摸球的总次数”的关系图象,即可得出“摸出黑球”的概率.【详解】解:由图可知,摸出黑球的概率约为0.2,故答案为:0.2.【点睛】本题主要考查用频率估计概率,需要注意的是试验次数要足够大,次数太少时不能估计概率.三、解答题1、,验证过程见解析【分析】首先根据题意分别根据列表法列出两个活动所有情况,再利用概率公式即可求得答案.【详解】活动1: 红球1红球2白球红球1 (红1,红2)(红1,白)红球2(红2,红1) (红2,白)白球(白,红1)(白,红2) ∵共有6种等可能的结果,摸到两个红球的有2种情况,∴摸出的两个球都是红球的概率记为活动2: 红球1红球2白球红球1(红1,红1)(红1,红2)(红1,白)红球2(红2,红1)(红2,红2)(红2,白)白球(白,红1)(白,红2)(白,白)∵共有9种等可能的结果,摸到两个红球的有4种情况,∴摸出的两个球都是红球的概率记为∴【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.重点需要注意球放回与不放回的区别.2、两次摸出的都是红球的概率为.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:根据题意,画树状图如下:共有12种结果,并且每种结果出现的可能性相同,符合题意的结果有2种,所以(两次摸出的都是红球).【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.3、【分析】作列表,共有6种可能的结果,摸出的这两个小球标记的数字之和为5的结果有2种,再由概率公式求解即可.【详解】解:列表如下:123(1,3)(2,3)4(1,4)(2,4)5(1,5)(2,5)共有6种等可能结果,其中小明摸出的两个小球标记的数字之和为5有2种,∴P(摸出的两个小球标记的数字之和为5)==【点睛】本题考查了树状图法或列表求概率,正确画出树状图或列表是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.4、(1)布袋里有1个黄球(2)公平,表格见解析【分析】(1)设布袋里黄球有x个,根据“白球的概率为”可得关于x的分式方程,解之可得答案;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.(1)解:设布袋里黄球有x个,根据题意,得:,解得:x=1,经检验:x=1是原分式方程的解,所以布袋里有1个黄球;(2)解:公平;列表如下: 白白黑黄白 (白,白)(白,黑)(白,黄)白(白,白) (白,黑)(白,黄)黑(黑,白)(黑,白) (黑,黄)黄(黄,白)(黄,白)(黄,黑) 由表知,共有12种等可能结果,其中两个球中有黄球的有6种情况,两个球中没有黄球的有6种情况,∴P(小张胜)=P(小王胜)= ,∴这个游戏公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.5、(1);(2)【分析】(1)根据概率公式计算即可;(2)画出树状图即可得解;【详解】(1)根据题意可得,小球的颜色是白色的概率是;故答案是:;(2)根据题意画出树状图如下:则两次摸出的小球颜色相同的概率为.【点睛】本题主要考查了概率公式的应用和画树状图求概率,准确画图计算是解题的关键.
相关试卷
这是一份沪科版九年级下册第26章 概率初步综合与测试课堂检测,共20页。试卷主要包含了下列说法正确的是,在一个不透明的布袋中,红色,下列事件是必然事件的是等内容,欢迎下载使用。
这是一份初中沪科版第26章 概率初步综合与测试课后测评,共19页。试卷主要包含了下列事件为随机事件的是,下列说法正确的是.,下列事件是必然事件的是,书架上有本小说,在一个不透明的盒子中装有红球等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课时练习,共21页。试卷主要包含了下列事件是必然事件的是,把6张大小,若a是从“,下列判断正确的是等内容,欢迎下载使用。