初中数学第26章 概率初步综合与测试课后复习题
展开
这是一份初中数学第26章 概率初步综合与测试课后复习题,共22页。试卷主要包含了下列事件中是必然事件的是,下列说法正确的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在一只暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%,那么可以推算a大约是( )A.15 B.12 C.9 D.42、甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是( )A.掷一枚正六面体的骰子,出现1点的概率B.一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率3、为了深化落实“双减”工作,促进中小学生健康成长,教育部门加大了实地督查的力度,对我校学生的作业、睡眠、手机、读物、体质“五项管理”要求的落实情况进行抽样调查,计划从“五项管理”中随机抽取两项进行问卷调查,则抽到“作业”和“手机”的概率为( )A. B. C. D.4、下列事件中是必然事件的是( )A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上5、下列说法正确的是( )A.掷一枚质地均匀的骰子,掷得的点数为3的概率是B.一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球C.连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同D.在同一年出生的400个同学中至少会有2个同学的生日相同6、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:抛掷次数m5001000150020002500300040005000“正面向上”的次数n26551279310341306155820832598“正面向上”的频率0.5300.5120.5290.5170.5220.5190.5210.520下面有3个推断:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.其中所有合理推断的序号是( )A.② B.①③ C.②③ D.①②③7、成语“守株待兔”描述的这个事件是( )A.必然事件 B.确定事件 C.不可能事件 D.随机事件8、下列说法正确的是( )A.“经过有交通信号的路口遇到红灯”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.“心想事成,万事如意”描述的事件是随机事件D.天气预报显示明天为阴天,那么明天一定不会下雨9、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为( ).A. B. C. D.110、下列事件是必然发生的事件是( )A.在地球上,上抛的篮球一定会下落B.明天的气温一定比今天高C.中秋节晚上一定能看到月亮D.某彩票中奖率是1%,买100张彩票一定中奖一张第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,一个转盘,转盘上共有红、白两种不同的颜色,已知红色区域的圆心角为,自由转动转盘,指针落在白色区域的概率是_________.2、在一个不透明袋子中有3个红球和2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则取出红球的概率是________.3、第24届世界冬季奥林匹克运动会,于2022年2月4日在中国北京市和河北省张家口市联合举行,其会徽为“冬梦”,这是中国历史上首次举办冬季奥运会.如图,是一幅印有北京冬奥会会徽且长为3m,宽为2m的长方形宣传画,为测量宣传画上会徽图案的面积,现将宣传画平铺,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在会徽图案上的频率稳定在0.15左右,由此可估计宣传画上北京冬奥会会徽图案的面积约为______.4、某次体能测试,要求每名考生从跳绳、长跑、游泳三个项目中随机抽取一项参加测试,小东和小华都抽到游泳项目的概率是______.5、从﹣2,﹣1,1,3,5五个数中随机选取一个数作为二次函数y=ax2+x﹣3中a的值,则二次函数图象开口向上的概率是 _____.三、解答题(5小题,每小题10分,共计50分)1、口袋里有除颜色外其它都相同的6个红球和4个白球.(1)先从袋子里取出m()个白球,再从袋子里随机摸出一个球,将“摸出红球”记为事件A.①如果事件A是必然事件,请直接写出m的值.②如果事件A是随机事件,请直接写出m的值.(2)先从袋子中取出m个白球,再放入m个一样的红球并摇匀,摸出一个球是红球的可能性大小是,求m的值.2、为提高学生的安全意识,学校就学生对校园安全知识的了解程度,对部分学生进行了问卷调查,将收集信息进行统计分成A、B、C、D四个等级,其中A:非常了解;B:基本了解;C:了解很少;D:不了解.并将结果绘制成两幅不完整的统计图.请你根据统计信息解答下列问题:(1)接受问卷调查的学生共有 人;(2)求扇形统计图中“D”等级的扇形的圆心角的度数,并补全条形统计图;(3)全校约有学生1500人,估计“A”等级的学生约有多少人?(4)九年一班从“A”等级的甲、乙、丙、丁4名同学中随机抽取2人参加学校竞赛,请用列表或树状图的方法求出恰好抽到甲、丁同学的概率.3、某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲.乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其他都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表).甲种品牌化妆品球两红一红一白两白礼金券(元)6126乙种品牌化妆品球两红一红一白两白礼金券(元)12612(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;(2)如果一个顾客当天在本店购买满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.4、从两副完全相同的扑克中,抽出两张黑桃5和两张梅花8,现将这四张扑克牌洗匀后,背面向上放在桌子上,(1)问从中随机抽取一张扑克牌是梅花8的概率是多少?(2)利用树状图或列表法表示从中随机抽取两张扑克牌成为一对的概率.5、某智力竞答节目共有10道选择题,每道题有且只有一个选项是正确的;小明已答对前7题,答对最后3题就能顺利通关,其中第8题有A,B两个选项,第9题和第10题都有A,B,C三个选项,假设这3道题小明都不会,只能从所有选项中随机选择一个,不过小明还有两次“求助”没有用(使用一次“求助”可以让主持人在该题的选项中去掉一个错误选项,每道题最多只能使用一次“求助”)(1)若小明在竞答第8题和第9题时都使用了“求助”,求小明能顺利通关的概率;(2)从概率的角度分析,如何使用两次“求助”,竞答通关的可能性更大 -参考答案-一、单选题1、A【分析】由于摸到红球的频率稳定在20%,由此可以确定摸到红球的概率为20%,而a个小球中红球只有3个,由此即可求出n.【详解】∵摸到红球的频率稳定在20%,∴摸到红球的概率为20%,而a个小球中红球只有3个,∴摸到红球的频率为.解得.故选A.【点睛】此题考查利用频率估计概率,解题关键在于利用摸到红球的频率稳定在20%.2、B【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;B、一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率≈0.33,故此选项符合题意;C、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;D、任意写出一个整数,能被2整除的概率为,故此选项不符合题意.故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.3、C【分析】根据列表法或树状图法表示出来所有可能,然后找出满足条件的情况,即可得出概率.【详解】解:将作业、睡眠、手机、读物、体质“五项管理”简写为:业、睡、机、读、体,利用列表法可得: 业睡机读体业 (业,睡)(业,机)(业,读)(业,体)睡(睡,业) (睡,机)(睡,读)(睡,体)机(机,业)(机,睡) (机,读)(机,体)读(读,业)(读,睡)(读,机) (读,体)体(体,业)(体,睡)(体,机)(体,读) 根据表格可得:共有20种可能,满足“作业”和“手机”的情况有两种,∴ 抽到“作业”和“手机”的概率为:,故选:C.【点睛】题目主要考查列表法或树状图法求概率,熟练掌握列表法或树状图法是解题关键.4、D【分析】必然事件就是一定发生的事件,根据定义即可解答.【详解】解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;D、常温下油的密度<水的密度,所以油一定浮在水面上,是必然事件,符合题意.故选:D.【点睛】用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、D【分析】A中掷一枚质地均匀的骰子,出现点数为的结果相等,故可得出掷得的点数为的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设人中前个人生日均不相同,而剩余的个人的生日会有与个人的生日有相同的情况,进而判断选项的正误.【详解】解:A掷一枚质地均匀的骰子,掷得的点数为的概率是,此选项错误,不符合题意;B一个袋子里有个球从中随机摸出一个球再放回,小军摸了次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是,此选项错误,不符合题意;D在同一年出生的个同学中至少会有个同学的生日相同是正确的,此选项符合题意;故选D.【点睛】本题考察了概率.解题的关键与难点在于了解概率概念与求解.6、C【分析】根据概率公式和图表给出的数据对各项进行判断,即可得出答案.【详解】解:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.正确;故选:C.【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.7、D【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【详解】解:“守株待兔”是随机事件.故选D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、C【详解】解:A、“经过有交通信号的路口遇到红灯”是随机事件,故本选项不符合题意;B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;故选:C【点睛】本题考查的是对随机事件和必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.9、C【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题球的总数为1+2=3,红球的数目为1.【详解】解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到红球的概率是:1÷3=.故选:C.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10、A【分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.【详解】解:A、在地球上,上抛的篮球一定会下落是必然事件,符合题意;B、明天的气温一定比今天的高,是随机事件,不符合题意;C、中秋节晚上一定能看到月亮,是随机事件,不符合题意;D、某彩票中奖率是1%,买100张彩票一定中奖一张,是随机事件,不符合题意.故选:A.【点睛】本题考查了必然事件的概念,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.关键是理解必然事件指在一定条件下一定发生的事件.二、填空题1、【分析】先确定白色部分的面积是整个圆的面积的,结合几何概率的含义可得答案.【详解】解:由题意得:白色部分的圆心角为: 所以: 所以自由转动转盘,指针落在白色区域的概率是,故答案为:【点睛】本题考查的是简单随机事件的概率,几何概率的计算,掌握“几何概率的计算与图形面积的关系”是解本题的关键.2、##【分析】用列举的方法一一列出可能出现的情况,进而即可求得恰好是红球的概率.【详解】解:根据题意,可能出现的情况有:红球;红球;红球;黑球;黑球;则恰好是红球的概率是,故答案为:.【点睛】本题主要考查了简单概率的计算,通过列举法进行计算是解决本题的关键.3、0.9【分析】根据题意可得长方形的面积,然后依据骰子落在会徽图案上的频率稳定在0.15左右,总面积乘以频率即为会徽图案的面积.【详解】解:由题意可得:长方形的面积为,∵骰子落在会徽图案上的频率稳定在0.15左右,∴会徽图案的面积为:,故答案为:.【点睛】题目主要考查根据频率计算满足条件的情况,理解题意,熟练掌握频率的计算方法是解题关键.4、【分析】根据列表法求概率即可.【详解】解:设跳绳、长跑、游泳三个项目分别为A,B,C,列表如下, ABCAAAABACBBABBBCCCACBCC共有9种等可能结果,小东和小华都抽到游泳项目只有1种结果,则小东和小华都抽到游泳项目的概率为故答案为:【点睛】本题考查了列表法求概率,掌握列表法求概率是解题的关键.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比.5、【分析】二次函数图象开口向上得出a>0,从所列5个数中找到a>0的个数,再根据概率公式求解可得.【详解】解:∵从﹣2,﹣1,1,3,5五个数中随机选取一个数,共有5种等可能结果,其中使该二次函数图象开口向上的有1,3,5这3种结果,∴该二次函数图象开口向上的概率为,故答案为:.【点睛】本题主要考查概率公式及二次函数的性质,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.三、解答题1、(1)①4;②1或2或3;(2)【分析】(1)①根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球,即可求解;② 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球,可得此时有白球 1个或2个或3个,即可求解;(2)根据题意得:所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为. 再根据概率公式,即可求解.【详解】解:(1)①根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球,∴ ;② 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球, ∴此时有白球 1个或2个或3个,即m的值为1或2或3;(2)所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为.根据题意得:,∴.【点睛】本题主要考查了必然事件和随机事件定义,求概率,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,概率公式是解题的关键.2、(1)40;(2)72°,见解析;(3)225人;(4)【分析】(1)C组:了解很少这个小组有人,占比由可得答案;(2)利用组占比乘以即可得到组所占的圆心角的大小,再求解组人数,补全图形即可;(3)由乘以A组的占比即可得到答案;(4)先列表,可得所有的等可能的结果有种,刚好抽到甲和丁同学的情况有2种,再利用概率公式可得答案.【详解】解:(1) C组:了解很少这个小组有人,占比 接受问卷调查的学生共有人,故答案为: ;(2)组占比: 扇形统计图中“D”等级的扇形的圆心角的度数为:,组人数为: 所以补全条形统计图如下:(3)全校约有学生1500人,估计“A”等级的学生约有:(人);(4)列表如下: 甲乙丙丁甲 (甲,乙)(甲,丙)(甲,丁)乙(乙,甲) (乙,丙)(乙,丁)丙(丙,甲)(丙,乙) (丙,丁)丁(丁,甲)(丁,乙)(丁,丙) 所有的等可能的结果有种,刚好抽到甲和丁同学的情况有2种,所以刚好抽到甲和丁同学的概率是:.【点睛】本题考查的是从条形图与扇形图中获取信息,扇形的圆心角的计算,补画条形图,利用样本估计总体,利用列表法求解简单随机事件的概率,掌握以上基础知识是解题的关键.3、(1)摇出一红一白的概率=(2)选择甲品牌化妆品,理由见解析【分析】(1)让所求的情况数除以总情况数即为所求的概率;(2)算出相应的平均收益,比较即可.(1)解:树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,摇出一红一白的概率=;(2)(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,∴甲品牌化妆品获礼金券的平均收益是:×6+×12+×6=10元.乙品牌化妆品获礼金券的平均收益是:×12+×6+×12=8元.∴选择甲品牌化妆品.【点睛】本题主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.4、(1);(2)【分析】(1)根据概率公式计算即可;(2)根据列表法求概率即可【详解】(1)根据题意共有4张牌,两张梅花8,从中随机抽取一张扑克牌是梅花8的概率是;(2)列表如下, 55885\558585555\858585858\888585888\共有12种等可能结果,其中凑成一对的有4种,随机抽取两张扑克牌成为一对的概率为【点睛】本题考查了概率公式求求概率和列表法求概率,掌握求概率的方法是解题的关键.5、(1)小明顺利通关的概率=;(2)从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.【分析】(1)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案; (2)分别计算出在第8题和第9题时都使用了“求助”,小明顺利通关的概率;第8题和第10题时都使用了“求助”小明顺利通关的概率,第9题和第10题时都使用了“求助”小明顺利通关的概率即可求得答案.【详解】(1)若小明在竞答第8题和第9题时都使用了“求助”,则都去掉了一个错误选项(假设第8题去掉错误选项B,第9题去掉错误选项C),第8题只剩一个正确答案A,第9题还剩两个选项,一个正确答案,一个错误选项,共有6种等可能的结果数,其中三题全答对的结果数为1所以小明顺利通关的概率=故通关的概率为(2)若小明在竞答第8题和第9题时都使用了“求助”(假设第8题去掉错误选项B,第9题去掉错误选项C), 或在竞答第8题和第10题时都使用了“求助”(假设第8题去掉错误选项B,第10题去掉错误选项C),则如图所示:或共有6种等可能的结果数,其中三题全答对的结果数为1,所以小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,顺利通关的概率=若小明在竞答第9题和第10题时都使用了“求助”(假设第9题去掉错误选项C,第10题去掉错误选项C)共有8种等可能的结果数,其中三题全答对的结果数为1所以小明在竞答第9题和第10题时都使用了“求助”, 顺利通关的概率=故从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
相关试卷
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课时练习试卷主要包含了下列说法错误的是,下列事件中,属于随机事件的是等内容,欢迎下载使用。
这是一份数学沪科版第26章 概率初步综合与测试精练
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课时训练,共20页。试卷主要包含了下列事件中是不可能事件的是,在一个不透明的盒子中装有红球等内容,欢迎下载使用。