初中数学北京课改版七年级下册第八章 因式分解综合与测试习题
展开
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试习题,共15页。试卷主要包含了因式分解,下列多项式中有因式x﹣1的是,多项式与的公因式是,下列各式的因式分解中正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列由左到右的变形,属于因式分解的是( )A. B.C. D.2、n为正整数,若2an﹣1﹣4an+1的公因式是M,则M等于( )A.an﹣1 B.2an C.2an﹣1 D.2an+13、下列各式中从左到右的变形,是因式分解的是( )A. B.C. D.4、因式分解:x3﹣4x2+4x=( )A. B. C. D.5、下列多项式中有因式x﹣1的是( )①x2+x﹣2;②x2+3x+2;③x2﹣x﹣2;④x2﹣3x+2A.①② B.②③ C.②④ D.①④6、下列由左到右的变形,是因式分解的是( )A. B.C. D.7、多项式与的公因式是( )A. B. C. D.8、下列各式的因式分解中正确的是( )A. B.C. D.9、下列各式中,从左到右的变形是因式分解的是( )A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣4xy+4y2=(x﹣2y)2 D.x2+1=x(x+)10、下列从左到右的变形,是因式分解的是( )A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)C.x2+1=x(x+) D.a2b+ab2=ab(a+b)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将4a2﹣8ab+4b2因式分解后的结果为___.2、分解因式:a3﹣2a2b+ab2=___.3、把多项式分解因式结果是______.4、因式分解:(x2+y2)2﹣4x2y2=________5、因式分解:﹣3x3+12x=___.三、解答题(5小题,每小题10分,共计50分)1、因式分解:(1);(2) (7x2+2y2)2﹣(2x2+7y2)22、因式分解(1)(2)(x-1)(x-3)-83、分解因式:.4、把下列各式因式分解:(1)(2)5、将下列各式分解因式:(1); (2) ---------参考答案-----------一、单选题1、A【解析】【分析】直接利用因式分解的定义分别分析得出答案.【详解】解:、,是因式分解,符合题意.、,是整式的乘法运算,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;故选:A.【点睛】本题主要考查了因式分解的意义,解题的关键是正确把握分解因式的定义,即分解成几个式子相乘的形式.2、C【解析】【分析】根据提取公因式的方法计算即可;【详解】原式,∴2an﹣1﹣4an+1的公因式是,即;故选C.【点睛】本题主要考查了利用提取公因式法因式分解,准确分析计算是解题的关键.3、B【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.,单项式不能因式分解,故此选项不符合题意;B.,是因式分解,故此选项符合题意;C.,是整式计算,故此选项不符合题意;D.,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:B.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.4、A【解析】【分析】根据因式分解的解题步骤,“一提、二套、三查”,进行分析,首先将整式进行提公因式,变为:,之后套公式变为:,即可得出对应答案.【详解】解:原式==故选:A.【点睛】本题考查的是因式分解的基础应用,熟练掌握因式分解的一般解题步骤,以及各种因式分解的方法是解题的关键.5、D【解析】【分析】根据十字相乘法把各个多项式因式分解即可判断.【详解】解:①x2+x﹣2=;②x2+3x+2=;③x2﹣x﹣2=;④x2﹣3x+2=.∴有因式x﹣1的是①④.故选:D.【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.6、A【解析】【分析】根据因式分解的定义,对各选项作出判断,即可得出正确答案.【详解】解:A、,是因式分解,故此选项符合题意;B、,原式分解错误,故本选项不符合题意;C、右边不是整式的积的形式,故本选项不符合题意;D、原式是整式的乘法运算,不是因式分解,故本选项不符合题意;故选:A.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.7、B【解析】【分析】先利用平方差公式、完全平方公式对两个多项式进行因式分解,再根据公因式的定义即可得.【详解】解:,,则多项式与的公因式是,故选:B.【点睛】本题考查了利用公式法进行因式分解、公因式,熟练掌握因式分解的方法是解题关键.8、D【解析】【分析】根据提公因式法,先提取各个多项式中的公因式,再对余下的多项式进行观察,能分解的继续分解.【详解】A -a2+ab-ac=-a(a-b+c) ,故本选项错误;B 9xyz-6x2y2=3xy(3z-2xy),故本选项错误;C 3a2x-6bx+3x=3x(a2-2b+1),故本选项错误; D ,故本选项正确.故选:D.【点睛】本题考查提公因式法分解因式,准确确定公因式是求解的关键.9、C【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从左到右的变形不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从左到右的变形属于因式分解,故本选项符合题意;D.等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;故选:C.【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式.10、D【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.【详解】A、结果不是积的形式,因而不是因式分解;B、,因式分解错误,故错误;C、 不是整式,因而不是因式分解;D、满足因式分解的定义且因式分解正确;故选:D.【点睛】题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.二、填空题1、【解析】【分析】先提取公因式4,再利用完全平方式即可求出结果.【详解】.故答案为:【点睛】本题考查因式分解.掌握提公因式和公式法进行因式分解是解答本题的关键.2、【解析】【分析】先提取公因式a,再利用完全平方公式因式分解.【详解】解:,故答案为:.【点睛】本题考查综合利用提公因式法和公式法因式分解.一般有公因式先提取公因式,再看是否能用公式法因式分解.3、【解析】【分析】利用平方差公式分解得到结果,即可做出判断.【详解】解:== 故答案为:【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.4、(x-y)2(x+y)2【解析】【分析】根据平方差公式和完全平方公式因式分解即可;【详解】原式,;故答案是:.【点睛】本题主要考查了利用公式法进行因式分解,准确分析化简是解题的关键.5、【解析】【分析】先提公因式,然后再利用平方差公式求解即可.【详解】解:故答案为【点睛】此题考查了因式分解的方法,熟练掌握提公因式法和平方差公式是解题的关键.三、解答题1、(1);(2)【解析】【分析】(1)先提出公因式,再利用完全公式,即可求解;(2)先利用平方差公式分解,再提公因式,然后利用平方差公式,即可求解.【详解】解:(1) ;(2) .【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.2、(1)x2(a2-2y)2;(2)(x-5)(x+1)【解析】【分析】(1)先提取x2,再根据完全平方公式即可求解;(2)先化简,再根据十字相乘法即可求解.【详解】解:(1)=x2(a4-4a2y+4y2)=x2(a2-2y)2(2)(x-1)(x-3)-8=x2-4x+3-8=x2-4x-5=(x-5)(x+1).【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.3、【解析】【分析】先根据完全平方公式分组分解,再利用平方差公式计算即可.【详解】解:原式===【点睛】本题考查利用分组分解法分解因式,正确把握完全平方公式和平方差公式特点是解题的关键.4、(1);(2)【解析】【分析】(1)先提取公因式 再按照完全平方公式分解因式即可;(2)先利用平方差公式分解,再利用平方差公式进行第二次分解,从而可得答案.【详解】解:(1) (2) 【点睛】本题考查的是综合提公因式与公式法分解因式,掌握“利用完全平方公式与平方差公式分解因式”是解本题的关键,一定要注意分解因式要彻底.5、(1);(2)【解析】【分析】(1)首先提取公因式-6,再利用完全平方公式继续分解即可;(2)首先提取公因式3ab,再利用平方差进行分解即可.【详解】解:(1)==;(2)= =.【点睛】本题主要考查了提公因式法、完全平方公式和平方差公式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果有公因式先提取公因式,再考虑运用公式来分解.
相关试卷
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试巩固练习,共16页。试卷主要包含了下列各式从左至右是因式分解的是,如图,长与宽分别为a,多项式与的公因式是,下列因式分解正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时练习,共16页。试卷主要包含了多项式分解因式的结果是等内容,欢迎下载使用。
这是一份初中北京课改版第八章 因式分解综合与测试同步训练题,共17页。试卷主要包含了下列各式从左至右是因式分解的是,把代数式分解因式,正确的结果是,下列运算错误的是,把分解因式的结果是.等内容,欢迎下载使用。