2020-2021学年第八章 因式分解综合与测试课后作业题
展开
这是一份2020-2021学年第八章 因式分解综合与测试课后作业题,共16页。试卷主要包含了下列因式分解错误的是,若x2+ax+9=,下列因式分解正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列多项式因式分解正确的是( )A. B.C. D.2、下列各式中,从左到右的变形是因式分解的是( )A. B.C. D.3、下列多项式中能用平方差公式分解因式的是( )A. B. C. D.4、下列因式分解错误的是( )A.3x-3y=3(x-y) B.x2-4=(x+2)(x-2)C.x2+6x-9=(x+9)2 D.-x2-x+2=-(x-1)(x+2)5、若x2+ax+9=(x﹣3)2,则a的值为( )A.﹣3 B.﹣6 C.±3 D.±66、已知a+b=2,a-b=3,则等于( )A.5 B.6 C.1 D.7、下列因式分解正确的是( )A.a2+1=a(a+1) B.C.a2+a﹣5=(a﹣2)(a+3)+1 D.8、下列各组式子中,没有公因式的一组是( )A.2xy与x B.(a﹣b)2与a﹣bC.c﹣d与2(d﹣c) D.x﹣y与x+y9、下列等式中,从左到右的变形是因式分解的是( )A. B.C. D.10、将分解因式,正确的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:﹣x2y+6xy﹣9y=___.2、分解因式__________.3、已知x2+mx+16能用完全平方公式因式分解,则m的值为 ___.4、若关于的二次三项式因式分解为,则的值为________.5、下列因式分解正确的是________(填序号)①;②;③;④三、解答题(5小题,每小题10分,共计50分)1、分解因式:(1)3a2﹣6a+3 (2)(x2+y2)2﹣4x2y22、分解因式:x3y﹣2x2y2+xy3.3、(Ⅰ)先化简,再求值:,其中,;(Ⅱ)分解因式:① ;② .4、计算:(1)计算:(2a)3•b4÷4a3b2;(2)计算:(a﹣2b+1)2;(3)分解因式:(a﹣2b)2﹣(3a﹣2b)2.5、分解因式:. ---------参考答案-----------一、单选题1、D【解析】【分析】根据因式分解的定义,把一个多项式化乘几个因式积的形式可判断A,还能继续因式分解可判断B,因式中不能出现分式可判断C,利用完全平方公式因式分解可判断D.【详解】解:A. ,因为括号外还有-5,不是乘积形式,故选项A不正确;B. ,因式分解不彻底,故选项B不正确;C. 因式中出现分式,故选项C不正确;D. 根据完全平方公式因式分解,故选项D正确.故选择D.【点睛】本题考查因式分解,掌握因式分解的方法与要求,注意因式分解是几个因式乘积,分解彻底不能再分解为止,因式中不能出现分式.2、C【解析】【分析】根据因式分解的定义判断即可.【详解】解:因式分解即把一个多项式化成几个整式的积的形式.A. ,不是几个整式的积的形式,A选项不是因式分解;B. ,不是几个整式的积的形式,B选项不是因式分解C. ,符合因式分解的定义,C是因式分解. D. ,不是几个整式的积的形式,D选项不是因式分解;故选C【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.3、A【解析】【分析】利用平方差公式逐项进行判断,即可求解.【详解】解:A、,能用平方差公式分解因式,故本选项符合题意;B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;故选:A【点睛】本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键.4、C【解析】【分析】提取公因式判断A,根据平方差公式和完全平方公式分解因式判断B,C,D即可.【详解】解:显然对于A,B,D正确,不乖合题意,对于C:右边≠左边,故C错误,符合题意;故选:C.【点睛】本题考查了因式分解,熟练掌因式分解的方法是解题的关键.5、B【解析】【分析】由结合从而可得答案.【详解】解: 而 故选:B【点睛】本题考查的是利用完全平方公式分解因式,掌握“”是解题的关键.6、B【解析】【分析】根据平方差公式因式分解即可求解【详解】∵a+b=2,a-b=3,∴故选B【点睛】本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键.7、D【解析】【分析】根据因式分解的定义严格判断即可.【详解】∵+1≠a(a+1)∴A分解不正确;∵,不是因式分解,∴B不符合题意;∵(a﹣2)(a+3)+1含有加法运算,∴C不符合题意;∵,∴D分解正确;故选D.【点睛】本题考查了因式分解,即把一个多项式写成几个因式的积,熟练进行因式分解是解题的关键.8、D【解析】【分析】根据公因式是各项中的公共因式逐项判断即可.【详解】解:A、2xy与x有公因式x,不符合题意;B、(a﹣b)2与a﹣b有公因式a﹣b,不符合题意;C、c﹣d与2(d﹣c)有公因式c﹣d,不符合题意;D、x﹣y与x+y没有公因式,符合题意,故选:D.【点睛】本题考查公因式,熟练掌握确定公因式的方法是解答的关键.9、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,据此逐一判断即可得答案.【详解】A.等号右边不是几个整式的积的形式,不是因式分解,不符合题意,B.等号右边不是几个整式的积的形式,不是因式分解,不符合题意,C.是把一个多项式化为几个整式的积的形式,是因式分解,符合题意,D.等号右边不是几个整式的积的形式,不是因式分解,不符合题意,故选:C.【点睛】此题考查了因式分解的概念,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解;练掌握因式分解的概念是题关键.10、C【解析】【分析】直接利用提取公因式法进行分解因式即可.【详解】解:+==;故选C.【点睛】本题主要考查提公因式法进行因式分解,熟练掌握提公因式法进行因式分解是解题的关键.二、填空题1、【解析】【分析】根据因式分解的方法求解即可.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.【详解】解:﹣x2y+6xy﹣9y故答案为:.【点睛】此题考查了分解因式,解题的关键是熟练掌握分解因式的方法.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.2、【解析】【分析】直接利用提公因式法分解因式即可.【详解】解:.故答案为:.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.3、【解析】【分析】利用完全平方公式的结构特征判断,确定出m的值即可得到答案.【详解】解:∵要使得能用完全平方公式分解因式,∴应满足,∵,∴,故答案为:.【点睛】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键.4、1【解析】【分析】把括号打开,求出的值,计算即可.【详解】解:∵, ∴,,故答案为:1.【点睛】本题考查了整式的乘法和因式分解,解题关键是熟练运用整式乘法法则进行计算.5、①④##④①【解析】【分析】根据因式分解的提公因式法及公式法对各式子计算即可得.【详解】解:①,正确;②,计算错误;③,计算错误;④,正确;故答案为:①④.【点睛】题目主要考查因式分解的方法:提公因式法和公式法,熟练掌握两种方法是解题关键.三、解答题1、(1);(2)【解析】【分析】(1)先提公因式3,再由完全平方公式进行因式分解;(2)先由完全平方公式去括号,化简再由完全平方公式以及平方差公式进行因式分解即可.【详解】(1),,;(2),,,,.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.2、【解析】【分析】先提取公因式,再运用完全平方公式分解即可.【详解】解:x3y﹣2x2y2+xy3==.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解,注意:分解要彻底.3、(Ⅰ),;(Ⅱ)①;②【解析】【分析】(Ⅰ)括号里的使用完全平方公式与平方差公式得到单项式加减的形式,合并同类项;进行因式分解,利用除法法则进行化简,最后将的值代入,进而得出结果.(Ⅱ)①先提公因式,再利用平方差公式进行分解.②先提公因式,再利用完全平方公式进行分解.【详解】解:(Ⅰ)原式当、时原式.(Ⅱ)① . ② .【点睛】本题考察了平方差公式、完全平方公式、因式分解、多项式与单项式的除法等知识点.解题的关键与难点在于熟练掌握乘法公式,以及运算法则.4、(1)2b2;(2)a2﹣4ab+4b2+2a﹣4b+1;(3)﹣8a(a﹣b).【解析】【分析】(1)先计算乘方,再计算除法可得;(2)利用完全平方公式计算可得;(3)先提公因式,再利用平方差分解可得.【详解】(1)原式=8a3•b4÷4a3b2=8a3b4÷4a3b2=2b2;(2)原式=[(a﹣2b)+1]2=(a﹣2b)2+2(a﹣2b)+12=a2﹣4ab+4b2+2a﹣4b+1;(3)原式=[(a﹣2b)+(3a﹣2b)]•[(a﹣2b)﹣(3a﹣2b)]=(4a﹣4b)•(﹣2a)=﹣8a(a﹣b).【点睛】本题主要考查整式的混合运算、完全平方公式和因式分解的能力,掌握基本运算是解题的关键.5、【解析】【分析】先提取公因式,然后利用十字相乘和平方差公式分解因式即可.【详解】解:原式===.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.
相关试卷
这是一份北京课改版七年级下册第八章 因式分解综合与测试课时训练,共16页。试卷主要包含了下列多项式中有因式x﹣1的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试同步测试题,共16页。
这是一份北京课改版七年级下册第八章 因式分解综合与测试课时训练,共15页。试卷主要包含了下列因式分解正确的是,下列各因式分解正确的是等内容,欢迎下载使用。