终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    必考点解析京改版七年级数学下册第八章因式分解同步练习练习题(名师精选)

    立即下载
    加入资料篮
    必考点解析京改版七年级数学下册第八章因式分解同步练习练习题(名师精选)第1页
    必考点解析京改版七年级数学下册第八章因式分解同步练习练习题(名师精选)第2页
    必考点解析京改版七年级数学下册第八章因式分解同步练习练习题(名师精选)第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版七年级下册第八章 因式分解综合与测试习题

    展开

    这是一份北京课改版七年级下册第八章 因式分解综合与测试习题,共18页。试卷主要包含了下列因式分解中,正确的是,下列分解因式结果正确的是,下列因式分解正确的是.,已知c<a<b<0,若M=|a等内容,欢迎下载使用。
    京改版七年级数学下册第八章因式分解同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列等式从左到右的变形,属于因式分解的是(       A. ﹣2x﹣1= B.(ab)(ab)=C.﹣4x+4= D.﹣1=2、下列各式能用完全平方公式进行因式分解的是(               A.9x2-6x+1 B.x2+x+1 C.x2+2x-1 D.x2-93、下列各式中,从左到右的变形是因式分解的是(  )A.2a2﹣2a+1=2aa﹣1)+1 B.(x+y)(xy)=x2y2C.x2﹣4xy+4y2=(x﹣2y2 D.x2+1=xx+4、下列因式分解中,正确的是(       A. B.C. D.5、下列各组式子中,没有公因式的一组是(  )A.2xyx B.(ab2abC.cd与2(dc D.xyx+y6、下列分解因式结果正确的是(       A.a2b+7abbba2+7a B.3x2y﹣3xy+6y=3yx2x﹣2)C.8xyz﹣6x2y2=2xyz(4﹣3xy D.﹣2a2+4ab﹣6ac=﹣2aa﹣2b+3c7、下列因式分解正确的是(       ).A. B.C. D.8、已知cab<0,若M=|aac)|,N=|bac)|,则MN的大小关系是(  )A.MN B.MN C.MN D.不能确定9、已知a+b=2,a-b=3,则等于(       A.5 B.6 C.1 D.10、下列等式中,从左到右的变形是因式分解的是(       A. B.C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、把多项式分解因式的结果是______________.2、因式分解:__.3、分解因式:________.4、若,那么xy=___.5、分解因式:(a+b2﹣(a+b)=_______.三、解答题(5小题,每小题10分,共计50分)1、阅读下列材料:一般地,没有公因式的多项式,当项数为四项或四项以上时,经常把这些项分成若干组,然后各组运用提取公因式法或公式法分别进行分解,之后各组之间再运用提取公因式法或公式法进行分解,这种因式分解的方法叫做分组分解法.如:因式分解:(1)利用分组分解法分解因式:       (2)因式分解:=_______(直接写出结果).2、分解因式:3、分解因式:(1)ab2a(2)(a2+1)2﹣4a2.(3)4xy2﹣4x2yy3(4)x2y2axay4、阅读与思考:材料:对于一些次数较高或者是比较复杂的式子进行因式分解时,换元法是一种常用的方法,下面是小影同学用换元法对多项式进行因式分解的过程.解:设原式第一步第二步第三步第四步(1)小影同学第二步到第三步运用了因式分解的______填写选项A.提取公因式B.平方差公式C.两数和的平方公式D.两数差的平方公式(2)小影同学因式分解的结果是否彻底?______填彻底或不彻底;若不彻底,请你帮她直接写出因式分解的最后结果______.(3)请你模仿以上方法尝试对多项式进行因式分解.5、(1)因式分解:          (2)计算: ---------参考答案-----------一、单选题1、C【解析】【分析】根据因式分解的定义和方法逐一判断即可.【详解】﹣2x+1≠﹣2x﹣1,A不是因式分解,不符合题意;∵(ab)(ab)=不符合因式分解的定义,B不是因式分解,不符合题意;﹣4x+4=,符合因式分解的定义,C是因式分解,符合题意;﹣1≠,不符合因式分解的定义,D不是因式分解,不符合题意;故选C【点睛】本题考查了因式分解的定义即把一个多项式分成几个因式的积的形式,熟练掌握因式分解的实质是恒等变形是解题的关键.2、A【解析】【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:【详解】A. 9x2-6x+1       ,故该选项正确,符合题意;       B. x2+x+1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;       C. x2+2x-1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;       D. x2-9,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;故选A【点睛】此题主要考查了运用公式法分解因式,正确应用公式是解题关键.3、C【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从左到右的变形不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从左到右的变形属于因式分解,故本选项符合题意;D.等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;故选:C【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式.4、D【解析】【分析】A、原式利用完全平方公式分解得到结果,即可作出判断;B、原式利用完全平方公式分解得到结果,即可作出判断;C、原式不能分解,不符合题意;D、原式利用平方差公式分解得到结果,即可作出判断.【详解】解:A、原式,不符合题意;B、原式,不符合题意;C、原式不能分解,不符合题意;D、原式,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5、D【解析】【分析】根据公因式是各项中的公共因式逐项判断即可.【详解】解:A、2xyx有公因式x,不符合题意;B、(ab2ab有公因式ab,不符合题意;C、cd与2(dc)有公因式cd,不符合题意;D、xyx+y没有公因式,符合题意,故选:D.【点睛】本题考查公因式,熟练掌握确定公因式的方法是解答的关键.6、D【解析】【分析】分别对四个选项进行因式分解,然后进行判断即可.【详解】解:A、原式=ba2+7a-1),故不符合题意;B、原式=3yx2x+2),故不符合题意;C、原式=2xy(4z﹣3xy),故不符合题意;D、原式=﹣2aa﹣2b+3c),故符合题意.故选D.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握提公因式法分解因式.7、C【解析】【分析】根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.【详解】解:A,故本选项错误;B,故本选项错误;C,故本选项正确;D,故本选项错误.故选:C【点睛】本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.8、C【解析】【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(ac)(ba)>0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出MN,故可比较求解.【详解】方法一:∵cab<0,a-c>0,M=|aac)|=- aacN=|bac)|=- bacM-N=- aac)-[- bac)]= - aac)+ bac)=(ac)(bab-a>0,∴(ac)(ba)>0MN方法二: ∵cab<0,∴可设c=-3,a=-2,b=-1,M=|-2×(-2+3)|=2,N=|-1×(-2+3)|=1MN故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(ac)(ba)>0,再进行判断.9、B【解析】【分析】根据平方差公式因式分解即可求解【详解】a+b=2,a-b=3,故选B【点睛】本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键.10、D【解析】【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解)、平方差公式()逐项判断即可得.【详解】解:A、等式右边不是整式积的形式,不是因式分解,则此项不符题意;B、是整式的乘法运算,不是因式分解,则此项不符题意;C、等式右边等于,与等式左边不相等,不是因式分解,则此项不符题意;D、等式右边等于,即等式的两边相等,且等式右边是整式积的形式,是因式分解,则此项符合题意;故选:D.【点睛】本题考查了因式分解的定义、整式的乘法运算,熟记因式分解的定义是解题关键.二、填空题1、## 【解析】【分析】直接提取公因式3x,再利用平方差公式分解因式即可.【详解】解:==故答案为:【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.2、【解析】【分析】先把原式化为 再利用平方差公式分解因式,再把其中一个因式按照平方差公式继续分解,从而可得答案.【详解】解:原式故答案为:【点睛】本题考查的是利用平方差公式分解因式,注意分解因式一定要分解到每个因式都不能再分解为止.3、##【解析】【分析】根据完全平方公式进行因式分解即可.【详解】解:原式故答案为:【点睛】本题考查了根据完全平方公式因式分解性,掌握完全平方公式是解题的关键.4、3【解析】【分析】先把原式化为:再利用非负数的性质求解,再求解代数式的值即可.【详解】解: 解得: 故答案为:3【点睛】本题考查的是非负数的性质,因式分解的应用,掌握“利用完全平方公式分解因式”是解题的关键.5、##【解析】【分析】直接找出公因式(a+b),进而分解因式得出答案.【详解】解:a+b2﹣(a+b)=a+b)(a+b1).故答案为:(a+b)(a+b1).【点睛】此题主要考查因式分解,解题的关键是熟知提公因式法的运用三、解答题1、(1)① ;②;(2)【解析】【分析】(1)仿照题目所给例题进行分组分解因式即可;(2)利用平方差和完全平方公式进行分解因式即可.【详解】解:(1)①==(2)故答案为:【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式分方法.2、【解析】【分析】综合利用提公因式法和完全平方公式进行因式分解即可得.【详解】解:原式【点睛】本题考查了因式分解,熟练掌握因式分解的各方法是解题关键.3、(1)ab+1)(b1);(2)﹣y2xy2(3)a+12a12;(4)(x+y)(xya【解析】【分析】(1)先提取公因式,再用平方差公式即可;(2)先利用平方差公式,再利用完全平方公式即可;(3)先提取公因式,再利用完全平方公式即可;(4)先利用平方差公式,再提取公因式即可.【详解】解:(1ab2a                                                       ab21                                                ab+1)(b1);                                          2)(a2+124a2 =(a2+1+2a)(a2+12a=(a+12a12 34xy24x2yy3=﹣yy2+4x24xy=﹣y2xy24 x2y2axay=(x+y)(xy)﹣ax+y=(x+y)(xya).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解因式,分解因式要彻底是解题关键.4、(1)   ;(2)不彻底,;(3)【解析】【分析】(1)小影同学第二步到第三步运用了完全平方公式中两数和的平方公式,即可得出选项;(2)根据完全平方公式中的两数差的平方公式可继续进行因式分解;(3)根据材料,用换元法进行分解因式即可.【详解】解:(1)小影同学第二步到第三步运用了完全平方公式中两数和的平方公式,故选:C;(2)小影同学因式分解的结果不彻底,原式 故答案为:不彻底,(3)设原式【点睛】本题考查了因式分解换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.5、(1);(2)【解析】【分析】(1)首先提取公因式,再根据完全平方公式计算,即可得到答案;(2)根据平方差公式和合并同类项的性质计算,即可得到答案.【详解】12【点睛】本题考查了乘法公式、整式、因式分解的知识;解题的关键是熟练掌握平方差公式、完全平方公式,从而完成求解. 

    相关试卷

    初中数学北京课改版七年级下册第八章 因式分解综合与测试综合训练题:

    这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试综合训练题,共17页。试卷主要包含了下列变形,属因式分解的是,已知的值为5,那么代数式的值是,下列多项式因式分解正确的是等内容,欢迎下载使用。

    2021学年第八章 因式分解综合与测试精练:

    这是一份2021学年第八章 因式分解综合与测试精练,共17页。试卷主要包含了下列各式中,正确的因式分解是,下列多项式,已知x,y满足,则的值为,下列因式分解正确的是.等内容,欢迎下载使用。

    初中数学北京课改版七年级下册第八章 因式分解综合与测试达标测试:

    这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试达标测试,共15页。试卷主要包含了若x2+ax+9=,计算的值是,将分解因式,正确的是,如图,长与宽分别为a,下列因式分解正确的是.等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map