![2021-2022学年沪科版九年级数学下册第26章概率初步专项训练试卷(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12687673/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年沪科版九年级数学下册第26章概率初步专项训练试卷(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12687673/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年沪科版九年级数学下册第26章概率初步专项训练试卷(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12687673/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪科版九年级下册第26章 概率初步综合与测试同步达标检测题
展开
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试同步达标检测题,共20页。试卷主要包含了若a是从“,下列说法中,正确的是,下列说法正确的是,下列事件中是必然事件的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是( )A. B. C. D.2、某十字路口的交通信号灯,每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的可能性大小为( )A. B. C. D.3、下列事件中,是必然事件的是( )A.同位角相等B.打开电视,正在播出特别节目《战疫情》C.经过红绿灯路口,遇到绿灯D.长度为4,6,9的三条线段可以围成一个三角形.4、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是( )A.1 B. C. D.5、下列说法中,正确的是( )A.“射击运动员射击一次,命中靶心”是必然事件B.事件发生的可能性越大,它的概率越接近1C.某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖D.抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得6、下列说法正确的是( )A.调查“行云二号”各零部件的质量适宜采用抽样调查方式B.5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83C.某游戏的中奖率为1%,则买100张奖券,一定有1张中奖D.某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定7、下列事件中是必然事件的是( )A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上8、明明和强强是九年级学生,在本周的体育课体能检测中,检测项目有跳远,坐位体前屈和握力三项.检测要求三选一,并且采取抽签方式取得,那么他们两人都抽到跳远的概率是( ).A. B. C. D.9、下列说法正确的是( )A.“买中奖率为的奖券10张,中奖”是必然事件B.“汽车累积行驶10000km,从未出现故障”是不可能事件C.气象局预报说“明天的降水概率为70%”,意味着明天一定下雨D.“经过有交通信号灯的路口,遇到红灯”是随机事件10、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是( )A. B. C. D.1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不透明袋子中装有5个球,其中有2个红球、3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是________.2、一只不透明的袋子中装有3个黑球、2个白球,每个球除颜色外都相同,从中任意摸出2个球,两个都是黑球的概率_______.3、不透明的袋子里装有一个黑球,两个红球,这些球除颜色外无其它差别,从袋子中取出一个球,不放回,再取出一个球,记下颜色,两次摸出的球是一红—黑的概率是________.4、真实惠举行抽奖活动,在一个封闭的盒子里有400张形状一模一样的纸片,其中有20张是一等奖,摸到二等奖的概率是10%,摸到三等奖的概率是20%,剩下是“谢谢惠顾”,则盒子中有“谢谢惠顾”______张.5、在0,1,2,3,4,5这六个数中,随机取出一个数记为a,使得关于x的一元二次方程有实数解的概率是______.三、解答题(5小题,每小题10分,共计50分)1、一个不透明的口袋里装有分别标有汉字“书”、“香”、“华”、“一”的四个小球,除字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“书”的概率为 ;(2)从中随机取出两球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“华一”的概率.2、某水果公司以9元/千克的成本从果园购进10000千克特级柑橘,在运输过程中,有部分柑橘损坏,该公司对刚运到的特级柑橘进行随机抽查,并得到如下的“柑橘损坏率”统计图.由于市场调节,特级柑橘的售价与日销售量之间有一定的变化规律,如下表是近一段时间该水果公司的销售记录 特级柑橘的售价(元/千克)1415161718特级柑橘的日销售量(千克)1000950900850800 (1)估计购进的10000千克特级柑橘中完好的柑橘的总重量为_____千克;(2)按此市场调节的观律,①若特级柑橘的售价定为16.5元/千克,估计日销售量,并说明理由②考虑到该水果公司的储存条件,该公司打算12天内售完这批特级柑橘(只售完好的柑橘),且售价保持不变求该公司每日销售该特级柑橘可能达到的最大利润,并说明理由.3、 “垃圾分类”进校园,锦江教育出实招.锦江区编写小学生《垃圾分类校本实施指导手册》,给同学们介绍垃圾分类科学知识,要求大家将垃圾按A,B,C,D四类分别装袋投放.其中A类指有害垃圾,B类指厨余垃圾,C类指可回收垃圾,D类指其他垃圾.小明和小亮各有一袋垃圾,需投放到小区如图所示的垃圾桶.(1)“小明投放的垃圾恰好是有害垃圾”这一事件是______.(请将正确答案的序号填写在横线上)①必然事件 ②不可能事件 ③随机事件(2)请用列表或画树状图的方法,求小明与小亮投放的垃圾是同类垃圾的概率.A.有害垃圾 B.厨余垃圾C.可回收垃圾 D.其他垃圾4、若关于x的一元二次方程ax2+bx+1=0,且a﹣b+3=0,该方程有一个根为1.(1)求a的值及另一个根;(2)若把该一元二次方程的二次项系数,一次项系数,常数项做成卡片,不放回地随意摸出两张卡片,求两张卡片的数字一样的概率.5、如图,转盘黑色扇形和白色扇形的圆心角分别为120°和240°.(1)让转盘自由转动一次,指针落在白色区域的概率是多少?(2)让转盘自由转动两次,请用树状图或者列表法求出两次指针都落在白色区域的概率.(注:当指针恰好指在分界线上时,无效重转) -参考答案-一、单选题1、A【分析】首先利用列举法可得所有等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.【详解】解:∵抛掷两枚质地均匀的硬币,两枚硬币落地后的所有等可能的结果有:正正,正反,反正,反反,∴正面都朝上的概率是: .故选A.【点睛】本题考查了列举法求概率的知识.此题比较简单,注意在利用列举法求解时,要做到不重不漏,注意概率=所求情况数与总情况数之比.2、C【分析】用绿灯亮的时间除以三种灯亮总时间即可解答.【详解】解:除以三种灯亮总时间是30+25+5=60秒,绿灯亮25秒,所以绿灯的概率是:.故选C.【点睛】本题主要考查了概率的基本计算,掌握概率等于所求情况数与总情况数之比是解答本题的关键.3、D【分析】根据必然事件的概念即可得出答案.【详解】解:∵同位角不一定相等,为随机事件,∴A选项不合题意,∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,∴B选项不合题意,∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件, ∴C选项不合题意,∵4+6>9,∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.∴D选项符合题意,故选:D.【点睛】本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念.4、B【分析】根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,然后利用概率公式计算即可.【详解】解:当a=1时于x的方程不是一元二次方程,其它三个数都是一元二次方程,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,关于x的方程为一元二次方程的概率是,故选择B.【点睛】本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键.5、B【分析】根据随机事件,必然事件,不可能事件的定义可判断A,根据随机事件发生的机会大小,估计概率的大小可判断B,可判断C,不规则物体的概率只能通过大数次的实验,使频率达到稳定时用频率估计概率可判断D.【详解】解:“射击运动员射击一次,命中靶心”可能会发生,也可都能不会发生是随机事件不是必然事件,故选项A不正确;事件发生的可能性越大,说明发生的机会越大,它的概率越接近1,故选项B正确;某种彩票中奖的概率是1%,因此买100张该种彩票每一张彩票中奖的概率都是1%,可能会中奖,但一定会中奖机会很小,故选项C不正确;图钉是不规则的物体,抛掷一枚图钉,“针尖朝上”的概率只能通过实验,大数次的实验,使频率稳定时,可用频率估计概率,不可以用列举法求得,故选项D不正确.故选择B.【点睛】本题考查事件,事件发生的可能性,概率,实验概率,掌握事件,事件发生的可能性,概率,实验概率知识是解题关键.6、B【分析】分别对各个选项进行判断,即可得出结论.【详解】解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,∵40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;故选:B.【点睛】本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键.7、D【分析】必然事件就是一定发生的事件,根据定义即可解答.【详解】解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;D、常温下油的密度<水的密度,所以油一定浮在水面上,是必然事件,符合题意.故选:D.【点睛】用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、B【分析】根据题意,采用列表法或树状图法表示出所有可能,然后找出满足条件的可能性,即可得出概率.【详解】解:分别记跳远为“跳”,坐位体前屈为“坐”,握力为“握”,列表如下: 跳坐握跳(跳,跳)(跳,坐)(跳,握)坐(坐,跳)(坐,坐)(坐,握)握(握,跳)(握,坐)(握,握)由表中可知,共有9种不同得结果,两人都抽到跳远的只有1种可能,则两人抽到跳远的概率为:,故选:B.【点睛】题目主要考查利用树状图或列表法求概率,熟练掌握树状图法或列表法是解题关键.9、D【分析】根据随机事件的定义,对选项中的事件进行判断即可.【详解】解:A.“买中奖率为的奖券10张,中奖”是随机事件,故原选项判断错误,不合题意;B.“汽车累积行驶10000km,从未出现故障”是随机事件,故原选项判断错误,不合题意;C.“明天的降水概率为70%”,是说明天降水的可能性是70%,是随机事件,故原选项判断错误,不合题意;D.“经过有交通信号灯的路口,遇到红灯”是随机事件,故原选项判断正确,符合题意.故选:D【点睛】本题考查了“不可能事件、随机事件、必然事件”的判断,熟知三种事件的定义并根据实际情况准确判断是解题关键.10、C【分析】先判断出矩形、菱形、等边三角形、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可.【详解】解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,共3个;则P(中心对称图形)=;故选:C.【点睛】本题考查中心对称图形的识别,列举法求概率,掌握中心对称图形的识别,列举法求概率是解题关键.二、填空题1、【分析】根据概率公式计算即可【详解】共有个球,其中黑色球3个从中任意摸出一球,摸出白色球的概率是.故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.2、【分析】利用树状图法列出所有的等可能性的结果数,然后找到摸到两个黑球的结果数,最后根据概率公式求解即可.【详解】解:列树状图如下所示:由树状图可知,一共有20种等可能性的结果数,其中摸到两个黑球的结果数有6种,∴P摸到两个都是黑球,故答案为:.【点睛】本题主要考查了用树状图或列表法求解概率,解题的关键在于能够熟练掌握树状图法或列表法求解概率.3、【分析】根据题意列出表格,可得6种等可能结果,其中一红—黑的有4种,再利用概率公式,即可求解.【详解】解:根据题意列出表格如下: 黑球红球1红球2黑球 红球1、黑球红球2、黑球红球1黑球、红球1 红球2、红球1红球2黑球、红球2红球1、红球2 得到6种等可能结果,其中一红—黑的有4种,所以两次摸出的球是一红—黑的概率是 .故答案为:【点睛】本题主要考查了求概率,能够利用画树状图或列表格的方法解答是解题的关键.4、260【分析】先求出一等奖的概率,然后利用频数=总数×概率求解即可.【详解】解:由题意得:一等奖的概率=,∴盒子中有“谢谢惠顾”张,故答案为:260.【点睛】本题主要考查了利用概率求频数,解题的关键在于能够熟练掌握频数=总数×概率.5、【分析】根据题意,分,时,进而求得一元二次方程根的判别式不小于0的情形数量,即可求得概率.【详解】解:当时,该方程不是一元二次方程,当时,解得时,关于x的一元二次方程有实数解随机取出一个数记为a,使得关于x的一元二次方程有实数解的概率是故答案为:【点睛】本题考查了利用概率公式计算概率,一元二次方程根的判别式判断根的情况,一元二次方程的定义,掌握以上知识是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.三、解答题1、(1);(2)【分析】(1)根据概率公式计算即可;(2)画出树状图计算即可;【详解】(1)由题可得,球上的汉字刚好是“书”的概率为;故答案是:;(2)根据题意画出树状图如下:则取出的两个球上的汉字能组成“华一”的概率为.【点睛】本题主要考查了概率公式和树状图法求概率,准确画图计算是解题的关键.2、(1)9000千克;(2)①当售价定为16.5元/千克,日销售量为875千克,理由见解析;②最大利润售价为19元/千克,每日的最大利润为7500元,理由见解析【分析】(1)根据图形即可得出柑橘损坏的概率,再用整体1减去柑橘损坏的概率即可得出柑橘完好的概率,根据所得出柑橘完好的概率乘以这批柑橘的总质量即可.(2)①根据表格求出销售量y与售价x的函数关系式,代入x=16.5计算即可;②12天内售完9000千克完好的柑橘,求出日最大销售量即可求出售价的范围,再根据利润=(售价-进价)×销售量求出利润与售价的函数关系式即可;【详解】(1)由图可知损坏率在0.1上下波动,并趋于稳定故所求为千克(2)①设销售量y与售价x的函数关系式为由题意可得函数图像过及两点得∴与的函数关系式为把代入,∴当售价定为16.5元/千克,日销售量为875千克②依题意得:12天内售完9000千克柑橘故日销售量至少为:(千克)∴解得设利润为w元,则∴对称轴为∴当时w随x的增大而增大∴当时销售利润最大,最大利润为(元)【点睛】此题考查了利用频率估计概率,以及二次函数销售利润问题.解题的关键是在图中得到必要的信息,求出柑橘损坏的概率;并利用等量关系:利润=(售价-进价)×销售量求出利润与售价的函数关系式.3、(1)③(2)【分析】(1)根据随机事件的相关概念可直接进行求解;(2)根据列表法可直接进行求解概率.(1)解:“小明投放的垃圾恰好是有害垃圾”这一事件是随机事件;故答案为③;(2)解:列表如下: ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)由上表可知,共有16种等可能情况,其中两人投放同种垃圾的有(A,A),(B,B),(C,C),(D,D)共4种.∴.【点睛】本题主要考查随机事件及概率,熟练掌握利用列表法求解概率是解题的关键.4、(1),另一个根为;(2)两张卡片的图案一样的概率是.【分析】(1)原方程化成ax2+(a+3)x+1=0,把x=1代入计算即可求得a的值,再利用根与系数的关系可求得另一个根;(2)得到二次项系数为2,一次项系数-1,常数项-1,利用枚举法即可求解.【详解】解:(1)∵a﹣b+3=0,即b=a+3,∴原方程为ax2+(a+3)x+1=0,∵该方程有一个根为1,∴a+(a+3) +1=0,解得:,∴方程为-2x2+x+1=0,即2x2-x-1=0,设方程的另一个根为x1,∴x1=;答:,另一个根为;(2)∵方程为2x2-x-1=0,∴二次项系数为2,一次项系数-1,常数项-1,把2,-1,-1做成卡片,不放回地随意摸出两张卡片,有(2,-1),(2,-1),(-1,-1)三种可能出现的结果,图案相同的情况有1种,故两张卡片的图案一样的概率是.【点睛】本题考查了一元二次方程的解、根与系数的关系,利用枚举法求概率,求概率的时候,应注意题中所说的随机抽取两张意思是抽取一张不放回再抽取一张,与抽取一张放回再抽一张不一样.5、(1);(2)见解析,【分析】(1)将120°作为1份,可知白色扇面占2份,黑色扇面占1份,利用概率公式计算即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出概率可得.【详解】解:(1)将120°作为1份,可知白色扇面占2份,黑色扇面占1份,它们发生的可能性相同,让转盘自由转动一次,共三种可能,指针落在白色区域有2种,所以,概率是;(2)设白色扇形两块和黑色扇形的一块分别为1,2,3,画树状图得: 由树状图知共有9种等可能结果,其中指针一次落在白色区域,另一次落在黑色区域的有4种结果,所以指针一次落在白色区域,另一次落在黑色区域的概率为.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
相关试卷
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试一课一练,共21页。试卷主要包含了下列事件是随机事件的是,下列事件中是必然事件的是,下列事件中,属于不可能事件的是等内容,欢迎下载使用。
这是一份数学九年级下册第26章 概率初步综合与测试课后复习题,共18页。试卷主要包含了在一个不透明的布袋中,红色,有两个事件,事件等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试课时训练,共19页。试卷主要包含了在一个不透明的布袋中,红色,下列说法正确的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)