初中数学沪科版九年级下册第26章 概率初步综合与测试一课一练
展开沪科版九年级数学下册第26章概率初步专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、把6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、正方形、长方形、圆、抛物线.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是( )
A. B. C. D.
2、有两个事件,事件(1):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6.下列判断正确的是( )
A.(1)(2)都是随机事件 B.(1)(2)都是必然事件
C.(1)是必然事件,(2)是随机事件 D.(1)是随机事件,(2)是必然事件
3、下列说法正确的是( ).
A.“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件
B.“打开电视机,正在播放乒乓球比赛”是必然事件
C.“面积相等的两个三角形全等”是不可能事件
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次
4、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为( )
A. B. C. D.
5、下列事件是随机事件的是( )
A.抛出的篮球会下落
B.经过有交通信号灯的路口,遇到红灯
C.任意画一个三角形,其内角和是
D.400人中有两人的生日在同一天
6、若随意向如图所示的正方形内抛一粒石子,则石子落在阴影部分的概率是( )
A.1 B.1 C. D.1
7、下列事件中是必然事件的是( )
A.小菊上学一定乘坐公共汽车
B.某种彩票中奖率为1%,买10000张该种票一定会中奖
C.一年中,大、小月份数刚好一样多
D.将豆油滴入水中,豆油会浮在水面上
8、下列事件中,属于不可能事件的是( )
A.射击运动员射击一次,命中靶心
B.从一个只装有白球和红球的袋中摸球,摸出黄球
C.班里的两名同学,他们的生日是同一天
D.经过红绿灯路口,遇到绿灯
9、关于“明天是晴天的概率为90%”,下列说法正确的是( ).
A.明天一定是晴天 B.明天一定不是晴天
C.明天90%的地方是晴天 D.明天是晴天的可能性很大
10、下列说法正确的是( )
A.“买中奖率为的奖券10张,中奖”是必然事件
B.“汽车累积行驶10000km,从未出现故障”是不可能事件
C.气象局预报说“明天的降水概率为70%”,意味着明天一定下雨
D.“经过有交通信号灯的路口,遇到红灯”是随机事件
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在一个不透明的袋子中装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出黄球的频率稳定在0.30左右,则袋子中黄球的数量可能是 _____个.
2、在一个不透明的盒子中装有2个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为_______.
3、有三辆车按1,2,3编号,苗苗和珊珊两人可任意选坐一辆车,则两人同坐一辆车的概率为___.
4、在一个不透明的袋子里装有红球和白球共30个,这些球除颜色外其余都相同.小明通过多次试验发现,摸出白球的频率稳定在0.3左右,则袋子里可能有 _____个红球.
5、小明和小强玩“石头、剪刀、布”游戏,按照“石头胜剪刀,剪刀胜布,布胜石头,相同算平局”的规则,两人随机出手一次,平局的概率为______.
三、解答题(5小题,每小题10分,共计50分)
1、为提高学生的安全意识,学校就学生对校园安全知识的了解程度,对部分学生进行了问卷调查,将收集信息进行统计分成A、B、C、D四个等级,其中A:非常了解;B:基本了解;C:了解很少;D:不了解.并将结果绘制成两幅不完整的统计图.请你根据统计信息解答下列问题:
(1)接受问卷调查的学生共有 人;
(2)求扇形统计图中“D”等级的扇形的圆心角的度数,并补全条形统计图;
(3)全校约有学生1500人,估计“A”等级的学生约有多少人?
(4)九年一班从“A”等级的甲、乙、丙、丁4名同学中随机抽取2人参加学校竞赛,请用列表或树状图的方法求出恰好抽到甲、丁同学的概率.
2、某智力竞答节目共有10道选择题,每道题有且只有一个选项是正确的;小明已答对前7题,答对最后3题就能顺利通关,其中第8题有A,B两个选项,第9题和第10题都有A,B,C三个选项,假设这3道题小明都不会,只能从所有选项中随机选择一个,不过小明还有两次“求助”没有用(使用一次“求助”可以让主持人在该题的选项中去掉一个错误选项,每道题最多只能使用一次“求助”)
(1)若小明在竞答第8题和第9题时都使用了“求助”,求小明能顺利通关的概率;
(2)从概率的角度分析,如何使用两次“求助”,竞答通关的可能性更大
3、2021年是中国辛丑牛年,小明将收集到的以下3张牛年邮票分别放到A、B、C三个完全相同的不透明盒子中,现从中随机抽取一个盒子.
(1)“小明抽到面值为80分的邮票”是______事件(填“随机”“不可能”或“必然”);
(2)小明先随机抽取一个盒子记下邮票面值后将盒子放回,再随机抽取一个盒子记下邮票面值,用画树状图(或列表)的方法,求小明抽到的两个盒子里邮票的面值恰好相等的概率.
4、小明每天骑自行车.上学,都要通过安装有红、绿灯的4个十字路口.假设每个路口红灯和绿灯亮的时间相同.
(1)小明从家到学校,求通过前2个十字路口时都是绿灯的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)
(2)小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为 .(请直接写出答案)
5、口袋装有3只形状大小一样的球,其中2个球是红色,1个球是白色,规定游戏者一次从口袋中摸出一个球,然后放回第二次再摸一个球,然后再放回.甲两次摸到红球获胜,乙摸到一红一白或二白获胜,你认为游戏对双方公平吗?请说明理由
-参考答案-
一、单选题
1、D
【分析】
根据题意,判断出中心对称图形的个数,进而即可求得答案
【详解】
解:∵线段、等边三角形、正方形、长方形、圆、抛物线中,中心对称图形有:线段、正方形、长方形、圆,共4种,总数为6种
∴在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是
故选D
【点睛】
本题考查了概率公式求概率,中心对称图形,掌握线段、等边三角形、正方形、长方形、圆、抛物线的性质是解题的关键.
2、D
【分析】
必然事件: 在一定条件下,一定会发生的事件,叫做必然事件,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件;根据概念判断即可.
【详解】
解:事件(1):购买1张福利彩票,中奖,是随机事件,
事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6,是必然事件,
故选D
【点睛】
本题考查的是随机事件与必然事件的含义,掌握“利用概念判断随机事件与必然事件”是解本题的关键.
3、A
【分析】
根据必然事件、不可能事件、随机事件的概念可区别各类事件.
【详解】
解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;
B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;
C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;
D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;
故选:A.
【点睛】
本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
4、B
【分析】
直接根据题意得出恰有三个面被涂色的有8个,再利用概率公式求出答案.
【详解】
解:由题意可得:小立方体一共有27个,恰有三个面被涂色的为棱长为3的正方体顶点处的8个小正方体;
故取得的小正方体恰有三个面被涂色.的概率为.
故选:B.
【点睛】
此题主要考查了概率公式的应用,正确得出三个面被涂色.小立方体的个数是解题关键.
5、B
【分析】
根据事件的确定性和不确定性,以及随机事件的含义和特征,逐项判断即可.
【详解】
A.抛出的篮球会下落是必然事件,故此选项不符合题意;
B.经过有交通信号灯的路口,遇到红灯是随机事件,故此选项符合题意;
C.任意画一个三角形,其内角和是是不可能事件,故此选项不符合题意;
D. 400人中有两人的生日在同一天是必然事件,故此选项不符合题意;
故选B
【点睛】
此题主要考查了事件的确定性和不确定性,要熟练掌握,解答此题的关键是要明确:事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.
6、A
【分析】
设正方形ABCD的边长为a,然后根据石子落在阴影部分的概率即为阴影部分面积与正方形面积的比,由此进行求解即可.
【详解】
解:如图所示,设正方形ABCD的边长为a,
∵四边形ABCD是正方形,
∴∠C=90°,
∴
,
∴,
∴石子落在阴影部分的概率是,
故选A.
【点睛】
本题主要考查了几何概率,正方形的性质,扇形面积公式,解题的关键在于能够根据题意得到石子落在阴影部分的概率即为阴影部分面积与正方形面积的比.
7、D
【分析】
必然事件就是一定发生的事件,根据定义即可解答.
【详解】
解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;
B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;
C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;
D、常温下油的密度<水的密度,所以油一定浮在水面上,是必然事件,符合题意.
故选:D.
【点睛】
用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8、B
【分析】
根据不可能事件的意义,结合具体的问题情境进行判断即可.
【详解】
解:A、射击运动员射击一次,命中靶心,是随机事件;故A不符合题意;
B、从一个只装有白球和红球的袋中摸球,摸出黄球,是不可能事件,故B符合题意;
C、班里的两名同学,他们的生日是同一天,是随机事件;故C不符合题意;
D、经过红绿灯路口,遇到绿灯,是随机事件,故D不符合题意;
故选:B.
【点睛】
本题考查随机事件,不可能事件,必然事件,理解随机事件,不可能事件,必然事件的意义是正确判断的前提.
9、D
【分析】
根据概率的定义:概率表示事件发生可能性的大小,据此判断即可得.
【详解】
解:明天是晴天的概率为90%,说明明天是晴天的可能性很大,
故选:D.
【点睛】
题目主要考查概率的定义及对其的理解,深刻理解概率表示事件发生可能性的大小是解题关键.
10、D
【分析】
根据随机事件的定义,对选项中的事件进行判断即可.
【详解】
解:A.“买中奖率为的奖券10张,中奖”是随机事件,故原选项判断错误,不合题意;
B.“汽车累积行驶10000km,从未出现故障”是随机事件,故原选项判断错误,不合题意;
C.“明天的降水概率为70%”,是说明天降水的可能性是70%,是随机事件,故原选项判断错误,不合题意;
D.“经过有交通信号灯的路口,遇到红灯”是随机事件,故原选项判断正确,符合题意.
故选:D
【点睛】
本题考查了“不可能事件、随机事件、必然事件”的判断,熟知三种事件的定义并根据实际情况准确判断是解题关键.
二、填空题
1、6
【分析】
由题意直接根据黄球出现的频率和球的总数,可以计算出黄球的个数.
【详解】
解:由题意可得,
20×0.30=6(个),
即袋子中黄球的个数最有可能是6个.
故答案为:6.
【点睛】
本题考查利用频率估计概率,解答本题的关键是明确题意,计算出黄球的个数.
2、1
【分析】
设黄球的个数为x个,然后根据概率公式列方程,解此分式方程即可求得答案.
【详解】
解:设黄球的个数为x个,
根据题意得:,
解得:x=1,
经检验,x=1是原分式方程的解,
∴黄球的个数为1个.
故答案为:1.
【点睛】
此题考查了分式方程的应用,以及概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.
3、
【分析】
画出树状图计算即可;
【详解】
根据题意画树状图得:
,,,
共有9种等可能的结果,期中两人同坐一辆车的结果数为3,
∴两人同坐一辆车的概率为;
故答案是:.
【点睛】
本题主要考查了画树状图求概率,准确计算是解题的关键.
4、21
【分析】
根据大量反复试验下频率的稳定值即为概率,即可用球的总数乘以白球的频率,可求得白球数量,从而得到红球的熟练.
【详解】
解:∵小明通过多次试验发现,摸出白球的频率稳定在0.3左右,
∴白球的个数=30×0.3=9个,
∴红球的个数=30-9=21个,
故答案为:21.
【点睛】
本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
5、
【分析】
首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两人平局的情况,再利用概率公式即可求得答案.
【详解】
解:小明和小强玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:
∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).
∴小明和小强平局的概率为:,
故答案为:.
【点睛】
此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
三、解答题
1、(1)40;(2)72°,见解析;(3)225人;(4)
【分析】
(1)C组:了解很少这个小组有人,占比由可得答案;
(2)利用组占比乘以即可得到组所占的圆心角的大小,再求解组人数,补全图形即可;
(3)由乘以A组的占比即可得到答案;
(4)先列表,可得所有的等可能的结果有种,刚好抽到甲和丁同学的情况有2种,再利用概率公式可得答案.
【详解】
解:(1) C组:了解很少这个小组有人,占比
接受问卷调查的学生共有人,
故答案为: ;
(2)组占比:
扇形统计图中“D”等级的扇形的圆心角的度数为:
,
组人数为:
所以补全条形统计图如下:
(3)全校约有学生1500人,估计“A”等级的学生约有:
(人);
(4)列表如下:
| 甲 | 乙 | 丙 | 丁 |
甲 |
| (甲,乙) | (甲,丙) | (甲,丁) |
乙 | (乙,甲) |
| (乙,丙) | (乙,丁) |
丙 | (丙,甲) | (丙,乙) |
| (丙,丁) |
丁 | (丁,甲) | (丁,乙) | (丁,丙) |
|
所有的等可能的结果有种,刚好抽到甲和丁同学的情况有2种,
所以刚好抽到甲和丁同学的概率是:.
【点睛】
本题考查的是从条形图与扇形图中获取信息,扇形的圆心角的计算,补画条形图,利用样本估计总体,利用列表法求解简单随机事件的概率,掌握以上基础知识是解题的关键.
2、(1)小明顺利通关的概率=;(2)从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.
【分析】
(1)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;
(2)分别计算出在第8题和第9题时都使用了“求助”,小明顺利通关的概率;第8题和第10题时都使用了“求助”小明顺利通关的概率,第9题和第10题时都使用了“求助”小明顺利通关的概率即可求得答案.
【详解】
(1)若小明在竞答第8题和第9题时都使用了“求助”,则都去掉了一个错误选项(假设第8题去掉错误选项B,第9题去掉错误选项C),第8题只剩一个正确答案A,第9题还剩两个选项,一个正确答案,一个错误选项,
共有6种等可能的结果数,其中三题全答对的结果数为1
所以小明顺利通关的概率=
故通关的概率为
(2)若小明在竞答第8题和第9题时都使用了“求助”(假设第8题去掉错误选项B,第9题去掉错误选项C), 或在竞答第8题和第10题时都使用了“求助”(假设第8题去掉错误选项B,第10题去掉错误选项C),则如图所示:
或
共有6种等可能的结果数,其中三题全答对的结果数为1,
所以小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,顺利通关的概率=
若小明在竞答第9题和第10题时都使用了“求助”(假设第9题去掉错误选项C,第10题去掉错误选项C)
共有8种等可能的结果数,其中三题全答对的结果数为1
所以小明在竞答第9题和第10题时都使用了“求助”, 顺利通关的概率=
故从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
3、(1)不可能;(2)P(两个盒子里邮票的面值恰好相等).
【分析】
(1)由三张邮票里面没有80分的邮票即可判断这是不可能事件;
(2)列树状图先得到所有的等可能性的结果数,然后找到两个盒子里邮票的面值恰好相等的结果数,再由概率公式求解即可.
【详解】
解:(1)∵三张邮票里面没有80分的邮票
∴“小明抽到面值为80分的邮票”是不可能事件,
故答案为:不可能;
(2)设A、B、C分别代表120分、150分、50分的邮票,
列树状图如下所示:
由树状图可知一共有9种等可能性的结果数,其中两个盒子里邮票的面值恰好相等的结果数有三种
∴P(两个盒子里邮票的面值恰好相等).
【点睛】
本题主要考查了事件发生的可能性,树状图法或列表法求解概率,熟练掌握相关知识是解题的关键.
4、
(1),见解析
(2)
【解析】
(1)
列表如下
第一个十字路口\第二个 | 红灯 | 绿灯 |
红灯 | 红红 | 红绿 |
绿灯 | 绿红 | 绿绿 |
∵共有4种等可能情形,满足条件的有1种.
∴通过前2个十字路口时都是绿灯的概率.
(2)
画树状图如图,表示红灯,表示绿灯,
∵共有16种等可能情形,满足条件的有11种.
小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为
故答案为:
【点睛】
本题考查了列表法或画树状图法求概率,掌握列表法或画树状图法是解题的关键.
5、这个游戏对双方是不公平的,理由见解析
【分析】
首先依据题先用树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可.
【详解】
解:这个游戏对双方是不公平的.
如图,
∵一共有9种情况,两次摸到红球的有4种,摸到一红一白或二白的有5种,
∴P(两个红球)=;P(一红一白)=,概率不相同,那么游戏不公平.
【点睛】
本题考查的是游戏的公平性.解决本题需要正确画出树状图进行解题.用到的知识点为:概率=所求情况数与总情况数之比.
数学九年级下册第26章 概率初步综合与测试课时练习: 这是一份数学九年级下册第26章 概率初步综合与测试课时练习,共20页。试卷主要包含了下列事件,你认为是必然事件的是,下列说法正确的是等内容,欢迎下载使用。
2020-2021学年第26章 概率初步综合与测试当堂达标检测题: 这是一份2020-2021学年第26章 概率初步综合与测试当堂达标检测题,共18页。试卷主要包含了下列说法中正确的是,下列说法正确的是,有两个事件,事件等内容,欢迎下载使用。
沪科版九年级下册第26章 概率初步综合与测试课时练习: 这是一份沪科版九年级下册第26章 概率初步综合与测试课时练习,共18页。试卷主要包含了下列事件是必然事件的是,下列说法中正确的是等内容,欢迎下载使用。