![精品试题沪科版九年级数学下册第24章圆专项练习试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12686531/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题沪科版九年级数学下册第24章圆专项练习试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12686531/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题沪科版九年级数学下册第24章圆专项练习试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12686531/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪科版九年级下册第24章 圆综合与测试同步练习题
展开
这是一份沪科版九年级下册第24章 圆综合与测试同步练习题,共33页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为( )
A.3 B.4 C.5 D.6
2、如图,是△ABC的外接圆,已知,则的大小为( )
A.55° B.60° C.65° D.75°
3、如图,点A,B,C均在⊙O上,连接OA,OB,AC,BC,如果OA⊥OB,那么∠C的度数为( )
A.22.5° B.45° C.90° D.67.5°
4、如图,在Rt中,.以点为圆心,长为半径的圆交于点,则的长是( )
A.1 B. C. D.2
5、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )
A. B. C. D.
6、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是( )
A.80° B.70° C.60° D.50°
7、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )
A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径
C.直径是最长的弦 D.垂直于弦的直径平分这条弦
8、点P(3,﹣2)关于原点O的对称点的坐标是( )
A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)
9、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是( )
A. B.
C.或 D.(﹣2,0)或(﹣5,0)
10、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )
A.2个 B.3个 C.4个 D.5个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,将Rt△ABC的斜边AB与量角器的直径恰好重合,B点与零刻度线的一端重合,∠ABC=38°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是 ___.
2、如图,正六边形ABCDEF内接于⊙O,若⊙O的周长为8π,则正六边形的边长为________.
3、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为 _____.
4、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.
5、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.
三、解答题(5小题,每小题10分,共计50分)
1、如图1,在⊙O中,AC=BD,且AC⊥BD,垂足为点E.
(1)求∠ABD的度数;
(2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;
(3)在(2)的条件下,求的长.
2、对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若P,Q两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”.
已知点N(3,0),A(1,0),,.
(1)①在点A,B,C中,线段ON的“二分点”是______;
②点D(a,0),若点C为线段OD的“二分点”,求a的取值范围;
(2)以点O为圆心,r为半径画圆,若线段AN上存在的“二分点”,直接写出r的取值范围.
3、如图,在⊙O中,点E是弦CD的中点,过点O,E作直径AB(AE>BE),连接BD,过点C作CFBD交AB于点G,交⊙O于点F,连接AF.求证:AG=AF.
4、如图,AB为⊙O的切线,B为切点,过点B作BC⊥OA,垂足为点E,交⊙O于点C,连接CO并延长CO与AB的延长线交于点D,连接AC.
(1)求证:AC为⊙O的切线;
(2)若⊙O半径为2,OD=4.求线段AD的长.
5、如图,抛物线y=-+x+2与x轴负半轴交于点A,与y轴交于点B.
(1)求A,B两点的坐标;
(2)如图1,点C在y轴右侧的抛物线上,且AC=BC,求点C的坐标;
(3)如图2,将△ABO绕平面内点P顺时针旋转90°后,得到△DEF(点A,B,O的对应点分别是点D,E,F),D,E两点刚好在抛物线上.
①求点F的坐标;
②直接写出点P的坐标.
-参考答案-
一、单选题
1、B
【分析】
由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.
【详解】
∵PA,PB是⊙O的切线,A,B为切点,
∴,,
∴在和中,,
∴,
∴.
故选:B
【点睛】
本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.
2、C
【分析】
由OA=OB,,求出∠AOB=130°,根据圆周角定理求出的度数.
【详解】
解:∵OA=OB,,
∴∠BAO=.
∴∠AOB=130°.
∴=∠AOB=65°.
故选:C.
【点睛】
此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.
3、B
【分析】
根据同弧所对的圆周角是圆心角的一半即可得.
【详解】
解:∵,
∴,
∴,
故选:B.
【点睛】
题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.
4、B
【分析】
利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CE⊥AB于E,利用,求出BE,根据垂径定理求出BD即可得到答案.
【详解】
解: 在Rt中,,
∴BC=3,,
连接CD,过点C作CE⊥AB于E,
∵,
∴,
解得,
∵CB=CD,CE⊥AB,
∴,
∴,
故选:B.
【点睛】
此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.
5、C
【分析】
过点A作AC⊥x轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.
【详解】
解:如图,过点A作AC⊥x轴于点C,
设 ,则 ,
∵ ,,
∴,
∵, ,
∴ ,
解得: ,
∴ ,
∴ ,
∴点 ,
∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,
∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是.
故选:C
【点睛】
本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.
6、A
【分析】
根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.
【详解】
证明:∵绕点C逆时针旋转得到,
∴,,
∴∠ADC=∠DAC,
∵点A,D,E在同一条直线上,
∴,
∴∠DAC=50°,
∴∠BAD=∠BAC-∠DAC=80°
故选A.
【点睛】
本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.
7、A
【分析】
定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.
【详解】
A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;
B、C选项,根据圆的定义可以得到;
D选项,是垂径定理;
故选:A
【点睛】
本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.
8、B
【分析】
根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.
【详解】
解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).
故选:B.
【点睛】
本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.
9、C
【分析】
由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
【详解】
解:∵直线交x轴于点A,交y轴于点B,
∴令x=0,得y=-3,令y=0,得x=-4,
∴A(-4,0),B(0,-3),
∴OA=4,OB=3,
∴AB=5,
设⊙P与直线AB相切于D,
连接PD,
则PD⊥AB,PD=1,
∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴,
∴,
∴AP= ,
∴OP= 或OP= ,
∴P或P,
故选:C.
【点睛】
本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
10、A
【分析】
根据轴对称图形与中心对称图形的概念进行判断.
【详解】
解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;
等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
共2个既是轴对称图形又是中心对称图形.
故选:A.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
二、填空题
1、76°或142°
【分析】
设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,根据圆周角定理得∠BOD=2∠BCD,根据等腰三角形的性质分BC为底边和BC为腰求∠BCD的度数即可.
【详解】
解:设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,
∵Rt△ABC的斜边AB与量角器的直径恰好重合,
∴A、C、B、D四点共圆,圆心为点O,
∴∠BOD=2∠BCD,
①若BC为等腰三角形的底边时,如图射线CD1,则∠BCD1=∠ABC=38°,
连接OD1,则∠BOD1=2∠BCD1=76°;
②若BC为等腰三角形的腰时,
当∠ABC为顶角时,如图射线CD2,则∠BCD2=(180°-∠ABC)÷2=71°,
连接OD2,则∠BOD2=2∠BCD2=142°,
当∠ABC为底角时,∠BCD=180°-2∠ABC=104°,不符合题意,舍去,
综上,点D在量角器上对应的度数是76°或142°,
故答案为:76°或142°.
【点睛】
本题考查圆周角定理、等腰三角形的性质、三角形的内角和定理,熟练掌握圆周角定理,利用分类讨论思想解决问题是解答的关键.
2、4
【分析】
由周长公式可得⊙O半径为4,再由正多边形的中心角公式可得正六边形ABCDEF中心角为,即可知正六边形ABCDEF为6个边长为4的正三角形组成的,则可求得六边形ABCDEF边长.
【详解】
∵⊙O的周长为8π
∴⊙O半径为4
∵正六边形ABCDEF内接于⊙O
∴正六边形ABCDEF中心角为
∴正六边形ABCDEF为6个边长为4的正三角形组成的
∴正六边形ABCDEF边长为4.
故答案为:4.
【点睛】
本题考查了正多边形的中心角公式,正n边形的每个中心角都等于,由中心角为得出正六边形ABCDEF为6个边长为4的正三角形组成的是解题的关键.
3、
【分析】
连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,,,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.
【详解】
解:如图所示,连接OB,交AC于点D,
∵四边形OABC为平行四边形,,
∴四边形OABC为菱形,
∴,,,
∵,
∴为等边三角形,
∴,
∴,
在中,设,则,
∴,
即,
解得:或(舍去),
∴的长为:,
故答案为:.
【点睛】
题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.
4、6
【分析】
依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;
【详解】
设直角三角形中能容纳最大圆的半径为:;
依据直角三角形的性质:可得斜边长为:
依据直角三角形面积公式:,即为;
内切圆半径面积公式:,即为;
所以,可得:,所以直径为:;
故填:6;
【点睛】
本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;
5、65
【分析】
连接OA,OC,OB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分,EO平分,再由各角之间的数量关系可得,,根据等量代换可得,代入求解即可.
【详解】
解:如图所示:连接OA,OC,OB,
∵PA、PB、DE与圆相切于点A、B、E,
∴,,,
∵,
∴,
∵,
∴DO平分,EO平分,
∴,,
∴,,
∴,
故答案为:65.
【点睛】
题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.
三、解答题
1、(1);(2);(3)
【分析】
(1)如图,过作 垂足分别为 连接证明 四边形为正方形,可得 证明 可得答案;
(2)先求解 再结合(1)的结论可得答案;
(3)如图,连接 先求解 再证明 再求解 可得 再利用弧长公式计算即可.
【详解】
解:(1)如图,过作 垂足分别为 连接
四边形为矩形,
由勾股定理可得: 而
四边形为正方形,
而
(2)如图,过作 垂足分别为
由(1)得:四边形为正方形,
OA=2,∠OAB=15°,
(3)如图,连接
【点睛】
本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形,正方形的判定与性质,垂径定理的应用,弧长的计算,掌握以上知识并灵活运用是解本题的关键.
2、(1)①B和C;②或;(2)或
【分析】
(1)①分别找出点A,B,C到线段ON的最小值和最大值,是否满足“二分点”定义即可;
②对a的取值分情况讨论:、、和,根据“二分点”的定义可求解;
(2)设线段AN上存在的“二分点”为,对的取值分情况讨论、,、,和,根据“二分点”的定义可求解.
【详解】
(1)①
∵点A在ON上,故最小值为0,不符合题意,
点B到ON的最小值为,最大值为,
∴点B是线段ON的“二分点”,
点C到ON的最小值为1,最大值为,
∴点C是线段ON的“二分点”,
故答案为:B和C;
②若时,如图所示:
点C到OD的最小值为,最大值为,
∵点C为线段OD的“二分点”,
∴,
解得:;
若,如图所示:
点C到OD的最小值为1,最大值为,满足题意;
若时,如图所示:
点C到OD的最小值为1,最大值为,
∵点C为线段OD的“二分点”,
∴,
解得:(舍);
若时,如图所示:
点C到OD的最小值为,最大值为,
∵点C为线段OD的“二分点”,
∴,
解得:或(舍),
综上所得:a的取值范围为或;
(2)
如图所示,设线段AN上存在的“二分点”为,
当时,最小值为:,最大值为:,
∴,即,
∵,
∴
∴;
当,时,最小值为:,最大值为:,
∴∴,即,
∵,
∴,
∵,
∴不存在;
当,时,最小值为:,最大值为:,
∴,即,
∴,
∵,
∴不存在;
当时,最小值为:,最大值为:,
∴,即,
∴,
∵,
∴,
综上所述,r的取值范围为或.
【点睛】
本题考查坐标上的两点距离,解一元二次方程解不等式以及点到圆的距离求最值,根据题目所给条件,掌握“二分点”的定义是解题的关键.
3、见解析
【分析】
由题意易得AB⊥CD,,则有,由平行线的性质可得,然后可得,进而问题可求证.
【详解】
证明:∵AB为⊙O的直径,点E是弦CD的中点,
∴AB⊥CD,
∴,
∴,
∵CF∥BD,
∴,
∴,
∴.
【点睛】
本题主要考查垂径定理、平行线的性质及圆周角定理,熟练掌握垂径定理、平行线的性质及圆周角定理是解题的关键.
4、(1)见解析;(2)4
【分析】
(1)连接OB,证明△AOB≌△AOC(SSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;
(2)在Rt△BOD中,勾股定理求得BD,根据sinD==,代入数值即可求得答案
【详解】
解:(1)连接OB,
∵AB是⊙O的切线,
∴OB⊥AB,
即∠ABO=90°,
∵BC是弦,OA⊥BC,
∴CE=BE,
∴AC=AB,
在△AOB和△AOC中,
,
∴△AOB≌△AOC(SSS),
∴∠ACO=∠ABO=90°,
即AC⊥OC,
∴AC是⊙O的切线;
(2)在Rt△BOD中,由勾股定理得,
BD==2,
∵sinD==,⊙O半径为2,OD=4.
∴=,
解得AC=2,
∴AD=BD+AB=4.
【点睛】
本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键.
5、(1)A(-1,0),B(0,2);(2)点C的坐标(,);(3)①求点F的坐标(1,2);②点P的坐标(,)
【分析】
(1)令x=0,求得y值,得点B的坐标;令y=0,求得x的值,取较小的一个即求A点的坐标;
(2)设C的坐标为(x,-+x+2),根据AC=BC,得到,令t=-+x,解方程即可;
(3)①根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,根据B,E都在抛物线上,则B,E是对称点,从而确定点P在抛物线的对称轴上,点F在BE上,且BE∥x轴,点E(3,2),确定BE=3,根据旋转性质,得EF=BO=2,从而确定点F的坐标;
②根据BE=3,∠BPE=90°,PB=PE,确定P到BE的距离,即可写出点P的坐标.
【详解】
(1)令x=0,得y=2,
∴点B的坐标为B(0,2);
令y=0,得-+x+2=0,
解得
∵点A在x轴的负半轴;
∴A点的坐标(-1,0);
(2)设C的坐标为(x,-+x+2),
∵AC=BC,A(-1,0),B(0,2),
∴,
∵A(-1,0),B(0,2),
∴,
即,
设t=-+x,
∴,
∴,
∴,
∴,
整理,得,
解得
∵点C在y轴右侧的抛物线上,
∴,
此时y=,
∴点C的坐标(,);
(3)①如图,根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,
∵B,E都在抛物线上,
∴B,E是对称点,
∴点P在抛物线的对称轴上,点F在BE上,且BE∥x轴,
∵抛物线的对称轴为直线x=,B(0,2),
∴点E(3,2),BE=3,
∵EF=BO=2,
∴BF=1,
∴点F的坐标为(1,2);
②如图,设抛物线的对称轴与BE交于点M,交x轴与点N,
∵BE=3,
∴BM=,
∵∠BPE=90°,PB=PE,
∴PM=BM=,
∴PM=BM=,
∴PN=2-=,
∴点P的坐标为(,).
【点睛】
本题考查了抛物线与坐标轴的交点,旋转的性质,两点间的距离公式,一元二次方程的解法,换元法解方程,熟练掌握抛物线的对称性,灵活理解旋转的意义,熟练解一元二次方程是解题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试练习,共30页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试精练,共30页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题,共25页。试卷主要包含了下列叙述正确的有个.等内容,欢迎下载使用。