![2022年最新精品解析沪科版九年级数学下册第24章圆专项练习试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12686186/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析沪科版九年级数学下册第24章圆专项练习试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12686186/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析沪科版九年级数学下册第24章圆专项练习试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12686186/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪科版第24章 圆综合与测试课时练习
展开
这是一份沪科版第24章 圆综合与测试课时练习,共34页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在Rt△ABC中,,,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的( )
A.①②③ B.①②④ C.①③④ D.②③④
2、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为( )
A.3 B. C. D.
3、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P. A,P分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是( )
A.20 m B.20m
C.(20 - 20)m D.(40 - 20)m
4、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,,,则阴影部分的面积为( )
A. B. C. D.
5、下列各点中,关于原点对称的两个点是( )
A.(﹣5,0)与(0,5) B.(0,2)与(2,0)
C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)
6、下列图形中,是中心对称图形,但不是轴对称图形的是( )
A. B. C. D.
7、下面的图形中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
8、下列语句判断正确的是( )
A.等边三角形是轴对称图形,但不是中心对称图形
B.等边三角形既是轴对称图形,又是中心对称图形
C.等边三角形是中心对称图形,但不是轴对称图形
D.等边三角形既不是轴对称图形,也不是中心对称图形
9、平面直角坐标系中点关于原点对称的点的坐标是( )
A. B. C. D.
10、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在⊙O中,∠BOC=80°,则∠A=___________°.
2、如图,在平面直角坐标系中,点N是直线上动点,M是上动点,若点C的坐标为,且与y轴相切,则长度的最小值为____________.
3、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.
4、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.
5、如图,在等腰直角中,已知,将绕点逆时针旋转60°,得到,连接,若,则________.
三、解答题(5小题,每小题10分,共计50分)
1、在中,,,过点A作BC的垂线AD,垂足为D,E为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90°得到线段AF,连接BF,与直线AD交于点G.
(1)如图,当点E在线段CD上时,
①依题意补全图形,并直接写出BC与CF的位置关系;
②求证:点G为BF的中点.
(2)直接写出AE,BE,AG之间的数量关系.
2、新定义:在平面直角坐标系xOy中,若几何图形G与⊙A有公共点,则称几何图形G为⊙A的关联图形,特别地,若⊙A的关联图形G为直线,则称该直线为⊙A的关联直线.如图1,∠M为⊙A的关联图形,直线l为⊙A的关联直线.
(1)已知⊙O是以原点为圆心,2为半径的圆,下列图形:
①直线y=2x+2;②直线y=﹣x+3;③双曲线y=,是⊙O的关联图形的是 (请直接写出正确的序号).
(2)如图2,⊙T的圆心为T(1,0),半径为1,直线l:y=﹣x+b与x轴交于点N,若直线l是⊙T的关联直线,求点N的横坐标的取值范围.
(3)如图3,已知点B(0,2),C(2,0),D(0,﹣2),⊙I经过点C,⊙I的关联直线HB经过点B,与⊙I的一个交点为P;⊙I的关联直线HD经过点D,与⊙I的一个交点为Q;直线HB,HD交于点H,若线段PQ在直线x=6上且恰为⊙I的直径,请直接写出点H横坐标h的取值范围.
3、已知:如图,△ABC为锐角三角形,AB=AC
求作:一点P,使得∠APC=∠BAC
作法:①以点A为圆心, AB长为半径画圆;
②以点B为圆心,BC长为半径画弧,交⊙A于点C,D两点;
③连接DA并延长交⊙A于点P
点P即为所求
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
(2)完成下面的证明
证明:连接PC,BD
∵AB=AC,
∴点C在⊙A上
∵BC=BD,
∴∠_________=∠_________
∴∠BAC=∠CAD
∵点D,P在⊙A上,
∴∠CPD=∠CAD(______________________) (填推理的依据)
∴∠APC=∠BAC
4、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别交于B、C两点,点B的坐标为,点D在上,且,求OA的半径和圆心A的坐标.
元元的做法如下,请你帮忙补全解题过程:
解:如图2,连接BC.作AELOB于E、AF⊥OC于F.
∴、(依据是 ① )
∵,
∴(依据是 ② ).
∵,.
∴BC是的直径(依据是 ③ ).
∴
∵,
∴A的坐标为( ④ )的半径为 ⑤
5、如图,△ABC内接于⊙O,D是⊙O的直径AB的延长线上一点,∠DCB=∠OAC.过圆心O作BC的平行线交DC的延长线于点E.
(1)求证:CD是⊙O的切线;
(2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.
-参考答案-
一、单选题
1、B
【分析】
根据,,点D、E分别是AB、AC的中点.得出∠DAE=90°,AD=AE=,可证∠DAB=∠EAC,再证△DAB≌△EAC(SAS),可判断①△AEC≌△ADB正确;作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,根据△AEC≌△ADB,得出∠DBA=∠ECA,可证∠P=∠BAC=90°,CP为⊙A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判断②CP存在最大值为正确;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判断③BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,可求∠ACE=30°,根据圆周角定理得出∠AOP=2∠ACE=60°,当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,可得∠ABD=30°根据圆周角定理得出∠AOP′=2∠ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断④点P运动的路径长为正确即可.
【详解】
解:∵,,点D、E分别是AB、AC的中点.
∴∠DAE=90°,AD=AE=,
∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,
∴∠DAB=∠EAC,
在△DAB和△EAC中,
,
∴△DAB≌△EAC(SAS),
故①△AEC≌△ADB正确;
作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,
∵△AEC≌△ADB,
∴∠DBA=∠ECA,
∴∠PBA+∠P=∠ECP+∠BAC,
∴∠P=∠BAC=90°,
∵CP为⊙A的切线,
∴AE⊥CP,
∴∠DPE=∠PEA=∠DAE=90°,
∴四边形DAEP为矩形,
∵AD=AE,
∴四边形DAEP为正方形,
∴PE=AE=3,
在Rt△AEC中,CE=,
∴CP最大=PE+EC=3+,
故②CP存在最大值为正确;
∵△AEC≌△ADB,
∴BD=CE=,
在Rt△BPC中,BP最小=,
BP最短=BD-PD=-3,
故③BP存在最小值为不正确;
取BC中点为O,连结AO,OP,
∵AB=AC=6,∠BAC=90°,
∴BP=CO=AO=,
当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,
∴∠ACE=30°,
∴∠AOP=2∠ACE=60°,
当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,
∴∠ABD=30°,
∴∠AOP′=2∠ABD=60°,
∴点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,
∵∠POP=∠POA+∠AOP′=60°+60°=120°,
∴L.
故④点P运动的路径长为正确;
正确的是①②④.
故选B.
【点睛】
本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键.
2、A
【分析】
分析:连接OA、OB,根据圆周角定理,易知∠AOB=60°;因此△ABO是等边三角形,即可求出⊙O的半径.
【详解】
解:连接BO,并延长交⊙O于D,连结DC,
∵∠A=30°,
∴∠D=∠A=30°,
∵BD为直径,
∴∠BCD=90°,
在Rt△BCD中,BC=3,∠D=30°,
∴BD=2BC=6,
∴OB=3.
故选A.
【点睛】
本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键.
3、D
【分析】
根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可.
【详解】
∵人工湖面积尽量小,
∴圆以AB为直径构造,设圆心为O,
过点B作BC ⊥,垂足为C,
∵A,P分别位于B的西北方向和东北方向,
∴∠ABC=∠PBC=∠BOC=∠BPC=45°,
∴OC=CB=CP=20,
∴OP=40,OB==,
∴最小的距离PE=PO-OE=40 - 20(m),
故选D.
【点睛】
本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.
4、B
【分析】
由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.
【详解】
解:根据题意,如图:
∵AB是的直径,OD是半径,,
∴AE=CE,
∴阴影CED的面积等于AED的面积,
∴,
∵,,
∴,
∴;
故选:B
【点睛】
本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.
5、D
【分析】
根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
【详解】
解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;
B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;
C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;
D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;
故选:D.
【点睛】
本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
6、B
【分析】
根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.
【详解】
解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;
B、是中心对称图形但不是轴对称图形,故符合题意;
C、既不是轴对称图形也不是中心对称图形,故不符合题意;
D、是轴对称图形但不是中心对称图形,故不符合题意;
故选B.
【点睛】
本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.
7、A
【详解】
解:A、既是轴对称图形又是中心对称图形,此项符合题意;
B、是中心对称图形,不是轴对称图形,此项不符题意;
C、是轴对称图形,不是中心对称图形,此项不符题意;
D、是轴对称图形,不是中心对称图形,此项不符题意;
故选:A.
【点睛】
本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.
8、A
【分析】
根据等边三角形的对称性判断即可.
【详解】
∵等边三角形是轴对称图形,但不是中心对称图形,
∴B,C,D都不符合题意;
故选:A.
【点睛】
本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.
9、B
【分析】
根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
【详解】
解:平面直角坐标系中点关于原点对称的点的坐标是
故选B
【点睛】
本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.
10、B
【详解】
解:A.是轴对称图形,不是中心对称图形,故不符合题意;
B.既是轴对称图形,又是中心对称图形,故符合题意;
C.不是轴对称图形,是中心对称图形,故不符合题意;
D.是轴对称图形,不是中心对称图形,故不符合题意.
故选:B.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题
1、40°度
【分析】
直接根据圆周角定理即可得出结论.
【详解】
解:与是同弧所对的圆心角与圆周角,,
.
故答案为:.
【点睛】
本题考查的是圆周角定理,解题的关键是熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
2、-2
【分析】
由图可知,当CN⊥AB且C、M、N三点共线时,长度最小,利用勾股定理求出CN的长,故可求解.
【详解】
由图可知,当CN⊥AB且C、M、N三点共线时,长度最小
∵直线AB的解析式为
当x=0时,y=5,当y=0时,x=5
∴B(0,5),A(5,0)
∴AO=BO,△AOB是等腰直角三角形
∴∠BAO=90°
当CN⊥AB时,则△ACN是等腰直角三角形
∴CN=AN
∵C
∴AC=7
∵AC2=CN2+AN2=2CN2
∴CN=
当 C、M、N三点共线时,长度最小
即MN=CN-CM=-2
故答案为:-2.
【点睛】
此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解.
3、35°
【分析】
根据旋转的性质可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
解:∵△COD是△AOB绕点O顺时针旋转30°后得到的图形,
∴∠AOD=∠BOC=30°,AO=DO,
∵∠AOC=100°,
∴∠BOD=100°−30°×2=40°,
∠ADO=∠A=(180°−∠AOD)=(180°−30°)=75°,
由三角形的外角性质得,∠B=∠ADO−∠BOD=75°−40°=35°.
故答案为:35°.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
4、
【分析】
先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.
【详解】
解:∵BC是圆O的切线,
∴∠OBC=90°,
∵四边形ABCO是平行四边形,
∴AO=BC,
又∵AO=BO,
∴BO=BC,
∴∠BOC=∠BCO=45°,
∵OD=OB,
∴∠ODB=∠OBD,
∵∠ODB+∠OBD=∠BOC,
∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,
故答案为:22.5°.
【点睛】
本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.
5、
【分析】
如图连接并延长,过点作交于点,,由题意可知为等边三角形,,,在中;在中计算求解即可.
【详解】
解:如图连接并延长,过点作交于点,
由题意可知,,为等边三角形
在中
在中
故答案为:.
【点睛】
本题考查了旋转的性质,等边三角形,勾股定理,含的直角三角形等知识.解题的关键在于做辅助线构造直角三角形.
三、解答题
1、(1)①BC⊥CF;证明见详解;②见详解;(2)2AE2=4AG2+BE2.证明见详解.
【分析】
(1)①如图所示,BC⊥CF.根据将线段AE逆时针旋转90°得到线段AF,得出AE=AF,∠EAF=90°,可证△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;
②根据AD⊥BC,BC⊥CF.可得AD∥CF,可证△BDG∽△BCF,可得,得出即可;
(2)2AE2=4AG2+BE2,延长BA交CF延长线于H,根据等腰三角形性质可得AD平分∠BAC,可得∠BAD=∠CAD=,可证△BAG∽△BHF,得出HF=2AG,再证△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可.
【详解】
解:(1)①如图所示,BC⊥CF.
∵将线段AE逆时针旋转90°得到线段AF,
∴AE=AF,∠EAF=90°,
∴∠EAC+∠CAF=90°,
∵,,
∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
,
∴△BAE≌△CAF(SAS),
∴∠ABE=∠ACF=45°,
∴∠ECF=∠ACB+∠ACF=45°+45°=90°,
∴BC⊥CF;
②∵AD⊥BC,BC⊥CF.
∴AD∥CF,
∴∠BDG=∠BCF=90°,∠BGD=∠BFC,
∴△BDG∽△BCF,
∴,
∵,AD⊥BC,
∴BD=DC=,
∴,
∴,
∴,
∴BG=GF;
(2)2AE2=4AG2+BE2.延长BA交CF延长线于H,
∵AD⊥BC,AB=AC,
∴AD平分∠BAC,
∴∠BAD=∠CAD=,
∵BG=GF,AG∥HF,
∴∠BAG=∠H=45°,∠AGB=∠HFB,
∴△BAG∽△BHF,
∴,
∴HF=2AG,
∵∠ACE=45°,
∴∠ACE =∠H,
∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,
∴∠EAC=∠FAH,
在△AEC和△AFH中,
,
∴△AEC≌△AFH(AAS),
∴EC=FH=2AG,
在Rt△AEF中,根据勾股定理,
在Rt△ECF中,即.
【点睛】
本题考查图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理,掌握图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理是解题关键.
2、(1)①③;(2)点N的横坐标;(3)或.
【分析】
(1)在坐标系中作出圆及三个函数图象,即可得;
(2)根据题意可得直线l的临界状态是与圆T相切的两条直线和,当临界状态为时;当临界状态为时,根据勾股定理及直角三角形的性质即可得;
(3)根据题意,只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,分三种情况讨论:①当点Q在点P的上方时,连接BP、DQ,交于点H;②当点P在点Q的上方时,直线BP、DQ,交于点H,求出直线HB、直线HD的解析式,然后利用两点之间的距离解方程求解;③当时,两条直线与圆无公共点;综合三种情况即可得.
【详解】
解:(1)在坐标系中作出圆及三个函数图象,可得①③函数解析式与圆有公共点,
故答案为:①③;
(2)如图所示:
∵直线l是的关联直线,
∴直线l的临界状态是与相切的两条直线和,
当临界状态为时,连接TM,
∴,,
∵当时,,
当时,,
∴,
∴为等腰直角三角形,
∴,
,
∴点,
同理可得当临界状态为时,
点,
∴点N的横坐标;
(3)①如图所示:只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,当点Q在点P的上方时,连接BP、DQ,交于点H;
设点,直线HB的解析式为,直线HD的解析式为,
当时,与互为相反数,可得
,
得,
由图可得:,则,
∴,
结合,
解得:,,
∴,
当时,,
∴,h的最大值为,
②如图所示:当点P在点Q的上方时,直线BP、DQ,交于点H,当圆心I在x轴上时,
设点,直线HB的解析式为,直线HD的解析式为,
当时,与互为相反数,可得
,
得,
由图可得:,则,
∴,
结合,
解得:,,
∴,
当时,,
∴,h的最小值为,
③当时,两条直线与圆无公共点,不符合题意,
∴,
综上可得:或.
【点睛】
题目主要考查直线与圆的位置关系,等腰三角形的性质,勾股定理解三角形等,理解题意,作出相应图形是解题关键.
3、(1)见解析;(2)BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半
【分析】
(1)根据按步骤作图即可;
(2)根据圆周角定理进行证明即可
【详解】
解:(1)如图所示,
(2)证明:连接PC,BD
∵AB=AC,
∴点C在⊙A上
∵BC=BD,
∴∠BAC=∠BAD
∴∠BAC=∠CAD
∵点D,P在⊙A上,
∴∠CPD=∠CAD(圆周角定理) (填推理的依据)
∴∠APC=∠BAC
故答案为:BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半
【点睛】
本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键.
4、垂径定理,圆周角定理,圆周角定理,(1,),2
【分析】
根据垂径定理,圆周角定理依次分析解答.
【详解】
解:如图2,连接BC.作AE⊥OB于E、AF⊥OC于F.
∴、(依据是垂径定理)
∵,
∴(依据是圆周角定理).
∵,.
∴BC是的直径(依据是圆周角定理).
∴,
∵,
∴A的坐标为(1,),的半径为2,
故答案为:垂径定理,圆周角定理,圆周角定理,(1,),2.
【点睛】
此题考查了圆的知识,垂径定理、圆周角定理,熟记各定理知识并综合应用是解题的关键.
5、
(1)见解析
(2)3,2
【分析】
(1)由等腰三角形的性质与已知条件得出,∠OCA=∠DCB,由圆周角定理可得∠ACB=90°,进而得到∠OCD=90°,即可得出结论;
(2)根据平行线分线段成比例定理得到,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,在Rt△OCD中,根据勾股定理求出x=1,即⊙O的半径为3,由平行线的性质得到∠OCB=∠EOC,在Rt△OCE中,可求得tan∠EOC=2,即tan∠OCB=2.
(1)
证明:∵OA=OC,
∴∠OAC=∠OCA,
∵∠DCB=∠OAC,
∴∠OCA=∠DCB,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠OCA+∠OCB=90°,
∴∠DCB+∠OCB=90°,
即∠OCD=90°,
∴OC⊥DC,
∵OC是⊙O的半径,
∴CD是⊙O的切线;
(2)
∵OE∥BC,
∴,
∵CD=4,CE=6,
∴,
设BD=2x,则OB=OC=3x,OD=OB+BD=5x,
∵OC⊥DC,
∴△OCD是直角三角形,
在Rt△OCD中,OC2+CD2=OD2,
∴(3x)2+42=(5x)2,
解得,x=1,
∴OC=3x=3,即⊙O的半径为3,
∵BC∥OE,
∴∠OCB=∠EOC,
在Rt△OCE中,tan∠EOC=,
∴tan∠OCB=tan∠EOC=2.
【点睛】
本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试同步练习题,共33页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
这是一份初中数学第24章 圆综合与测试随堂练习题,共39页。试卷主要包含了如图,点A等内容,欢迎下载使用。
这是一份沪科版九年级下册第24章 圆综合与测试测试题,共31页。