搜索
    上传资料 赚现金
    英语朗读宝

    精品试题沪科版九年级数学下册第24章圆专项训练练习题(含详解)

    精品试题沪科版九年级数学下册第24章圆专项训练练习题(含详解)第1页
    精品试题沪科版九年级数学下册第24章圆专项训练练习题(含详解)第2页
    精品试题沪科版九年级数学下册第24章圆专项训练练习题(含详解)第3页
    还剩34页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中第24章 圆综合与测试随堂练习题

    展开

    这是一份初中第24章 圆综合与测试随堂练习题,共37页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆专项训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,PA,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为( )

    A.70° B.50° C.20° D.40°
    2、如图,AB,BC,CD分别与⊙O相切于E、F、G三点,且ABCD,BO=3,CO=4,则OF的长为(  )

    A.5 B. C. D.
    3、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).

    A.20° B.25° C.30° D.40°
    4、下列图形中,是中心对称图形的是( )
    A. B.
    C. D.
    5、如图,AB 为⊙O 的直径,弦 CD^AB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为( )

    A.3 B.2 C.1 D.
    6、下列图形中,既是中心对称图形又是抽对称图形的是( )
    A. B. C. D.
    7、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
    A.OP>4 B.0≤OP2 D.0≤OP4,
    故选:A.
    【点睛】
    此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
    8、A
    【分析】
    如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.
    【详解】
    解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点,
    记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:

    四边形为正方形,则

    设 而AB=2,CD=3,EF=5,结合正方形的性质可得:




    又 而


    解得:

    故选A
    【点睛】
    本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.
    9、D
    【分析】
    连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.
    【详解】
    解:连接OB,OC,

    ∵∠BAC=30°,
    ∴∠BOC=60°.
    ∵OB=OC,BC=6,
    ∴△OBC是等边三角形,
    ∴OB=BC=6.
    ∴⊙O的直径等于12.
    故选:D.
    【点睛】
    本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.
    10、B
    【分析】
    利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CE⊥AB于E,利用,求出BE,根据垂径定理求出BD即可得到答案.
    【详解】
    解: 在Rt中,,
    ∴BC=3,,
    连接CD,过点C作CE⊥AB于E,
    ∵,
    ∴,
    解得,
    ∵CB=CD,CE⊥AB,
    ∴,
    ∴,
    故选:B.

    【点睛】
    此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.
    二、填空题
    1、
    【分析】
    过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径.
    【详解】

    如图所示,是正三角形,故O是的中心,,
    ∵正三角形的边长为2,OE⊥AB
    ∴,,
    ∴,
    由勾股定理得:,
    ∴,
    ∴,
    ∴(负值舍去).
    故答案为:.
    【点睛】
    本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解.
    2、-2
    【分析】
    由图可知,当CN⊥AB且C、M、N三点共线时,长度最小,利用勾股定理求出CN的长,故可求解.
    【详解】
    由图可知,当CN⊥AB且C、M、N三点共线时,长度最小
    ∵直线AB的解析式为
    当x=0时,y=5,当y=0时,x=5
    ∴B(0,5),A(5,0)
    ∴AO=BO,△AOB是等腰直角三角形
    ∴∠BAO=90°
    当CN⊥AB时,则△ACN是等腰直角三角形
    ∴CN=AN
    ∵C
    ∴AC=7
    ∵AC2=CN2+AN2=2CN2
    ∴CN=
    当 C、M、N三点共线时,长度最小
    即MN=CN-CM=-2
    故答案为:-2.

    【点睛】
    此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解.
    3、22020
    【分析】
    根据,,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标.
    【详解】
    解:∵∠OA0A1=90°,∠A1OA0=60°,点A0的坐标是(1,0),
    ∴OA0=1,
    ∴点A1 的横坐标是 1=20,
    ∴OA1=2OA0=2,
    ∵∠A2A1O=90°,∠A2OA1=60°,
    ∴OA2=2OA1=4,
    ∴点A2 的横坐标是- OA2=-2=-21,
    依次进行下去,Rt△OA2A3,Rt△OA3A4…,
    同理可得:
    点A3 的横坐标是﹣2OA2=﹣8=﹣23,
    点A4 的横坐标是﹣8=﹣23,
    点A5 的横坐标是 OA5=×2OA4=2OA3=4OA2=16=24,
    点A6 的横坐标是2OA5=2×2OA4=23OA3=64=26,
    点A7 的横坐标是64=26,

    发现规律,6次一循环,





    2021÷6=336……5
    则点A2021的横坐标与的坐标规律一致是 22020.
    故答案为:22020.
    【点睛】
    本题考查了规律型——点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n在轴上,且坐标为.
    4、2
    【分析】
    连接OC,利用半径相等以及三角形的外角性质求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性质即可求解.
    【详解】
    解:连接OC,

    ∵OA=OC,∠A=30°,
    ∴∠COH=2∠A=60°,
    ∵弦CD⊥AB于H,
    ∴∠OHC=90°,
    ∴∠OCH=30°,
    ∵OH=1,
    ∴OC=2OH=2,
    故答案为:2.
    【点睛】
    本题考查了垂径定理和含30°角的直角三角形的性质.熟练掌握垂径定理是解题的关键.
    5、
    【分析】
    过点作轴,交于点,根据中位线定理可得,设点到轴的距离为G,则△AOE的边上的高,作的外接圆,则当点位于图中处时,最大,根据三角形面积公式计算即可.
    【详解】
    解:过点作轴,交于点,

    ∵A(-1,0),B(2,0),
    ∴,,
    ∵D为线段BC的中点,轴,
    ∴,
    ∴,
    设点到轴的距离为,
    则△AOE的边上的高,
    作的外接圆,
    则当点位于图中处时,最大,
    因为,
    ∴,
    ∴为等边三角形,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    故答案为:.
    【点睛】
    本题考查了三角形中位线定理,圆周角定理,圆周角和圆心角的关系,等边三角形的判定与性质,解直角三角形等知识点,根据题意得出点的位置是解本题的关键.
    三、解答题
    1、
    (1)见解析
    (2)3,2
    【分析】
    (1)由等腰三角形的性质与已知条件得出,∠OCA=∠DCB,由圆周角定理可得∠ACB=90°,进而得到∠OCD=90°,即可得出结论;
    (2)根据平行线分线段成比例定理得到,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,在Rt△OCD中,根据勾股定理求出x=1,即⊙O的半径为3,由平行线的性质得到∠OCB=∠EOC,在Rt△OCE中,可求得tan∠EOC=2,即tan∠OCB=2.
    (1)
    证明:∵OA=OC,
    ∴∠OAC=∠OCA,
    ∵∠DCB=∠OAC,
    ∴∠OCA=∠DCB,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠OCA+∠OCB=90°,
    ∴∠DCB+∠OCB=90°,
    即∠OCD=90°,
    ∴OC⊥DC,
    ∵OC是⊙O的半径,
    ∴CD是⊙O的切线;
    (2)
    ∵OE∥BC,
    ∴,
    ∵CD=4,CE=6,
    ∴,
    设BD=2x,则OB=OC=3x,OD=OB+BD=5x,
    ∵OC⊥DC,
    ∴△OCD是直角三角形,
    在Rt△OCD中,OC2+CD2=OD2,
    ∴(3x)2+42=(5x)2,
    解得,x=1,
    ∴OC=3x=3,即⊙O的半径为3,
    ∵BC∥OE,
    ∴∠OCB=∠EOC,
    在Rt△OCE中,tan∠EOC=,
    ∴tan∠OCB=tan∠EOC=2.
    【点睛】
    本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键.
    2、
    (1),证明见解析
    (2)成立,证明见解析
    (3)
    【分析】
    (1)设,先根据直角三角形的性质可得,再根据旋转的性质可得,然后根据等边三角形的判定与性质可得,,都是等边三角形,从而可得,由此即可得出结论;
    (2)在上截取,连接,先根据旋转的性质可得,从而可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,,然后根据三角形的外角性质可得,最后根据等腰三角形的判定可得,由此即可得出结论;
    (3)如图(见解析),先根据旋转的性质可得,再根据直角三角形全等的判定定理证出,然后根据全等三角形的性质可得,最后根据旋转角即可得.
    (1)
    解:,证明如下:
    设,
    在中,,

    由旋转的性质得:,
    ,和都是等边三角形,


    是等边三角形,


    (2)
    解:成立,证明如下:
    如图,在上截取,连接,

    由旋转的性质得:,


    在和中,,





    (3)
    解:如图,当点三点在一条直线上时,

    由旋转的性质得:,

    在和中,,


    则旋转角.
    【点睛】
    本题考查了旋转的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.
    3、(1)70°;(2)103°
    【分析】
    (1)根据等弧所对的圆周角相等可得,得出,在三角形中利用三角形内角和定理求解即可得;
    (2)由圆周角定理可得,结合(1)中结论及图形可得:,代入求解即可.
    【详解】
    解:(1),
    ,,
    在中,

    (2)由圆周角定理,得.

    【点睛】
    题目主要考查圆周角定理,三角形内角和定理,熟练掌握运用圆周角定理是解题关键.
    4、(1)EF、CD;(2)①;②;(3);(4)或
    【分析】
    (1)的半径为1,则的最长的弦长为2,根据两点的距离可得,进而即可求得答案;
    (2)①根据定义作出图形,根据轴对称的方法求得对称轴,反射线段经过对应圆心的中点,即可求得的坐标;②由①可得当时,yM,设当取得最大值时,过点作轴,根据题意,分别为沿直线y=x的方向向上平移一段距离S 后的对应点,则,根据余弦求得进而代入数值列出方程,解方程即可求得的最大值,进而求得的范围;
    (3)根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过作的垂线,则即为反射轴,反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线,求得半径为,根据圆的面积公式进行计算即可;
    (4)根据(2)的方法找到所在的圆心,当M点在圆上运动一周时,如图,取的中点,的中点,即的中点在以为圆心,半径为的圆上运动,进而即可求得反射轴l与y轴交点的纵坐标的取值范围
    【详解】
    (1)的半径为1,则的最长的弦长为2
    根据两点的距离可得

    故符合题意的“反射线段”有EF、CD;
    故答案为:EF、CD
    (2)①如图,过点作轴于点,连接

    A点坐标为(0,2),B点坐标为(1,1),
    ,且,
    的半径为1,
    ,且
    线段AB是⊙O的以直线l为对称轴的“反射线段”,,

    ②由①可得当时,yM

    如图,设当取得最大值时,过点作轴,根据题意,分别为沿直线y=x的方向向上平移一段距离S 后的对应点,则,



    过中点,作直线交轴于点,则即为反射轴

    yM,





    解得(舍)

    (3)

    的半径为1,则是等边三角形,
    根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过作的垂线,则即为反射轴,
    反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线



    当M点在圆上运动一周时,求反射轴l未经过的区域的面积为.
    (4)如图,根据(2)的方法找到所在的圆心,



    ,是等腰直角三角形
    ,


    当M点在圆上运动一周时,如图,取的中点,的中点,
    是的中位线
    ,
    即的中点在以为圆心,半径为的圆上运动
    若MN是⊙O的以直线l为对称轴的“反射线段”,则为的切线
    设与轴交于点


    同理可得

    反射轴l与y轴交点的纵坐标的取值范围为或
    【点睛】
    本题考查了中心对称与轴对称,圆的相关知识,切线的性质,三角形中位线定理,余弦的定义,掌握轴对称与中心对称并根据题意作出图形是解题的关键.
    5、(1)见解析;(2)BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半
    【分析】
    (1)根据按步骤作图即可;
    (2)根据圆周角定理进行证明即可
    【详解】
    解:(1)如图所示,

    (2)证明:连接PC,BD
    ∵AB=AC,
    ∴点C在⊙A上
    ∵BC=BD,
    ∴∠BAC=∠BAD
    ∴∠BAC=∠CAD
    ∵点D,P在⊙A上,
    ∴∠CPD=∠CAD(圆周角定理) (填推理的依据)
    ∴∠APC=∠BAC
    故答案为:BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半
    【点睛】
    本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键.

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试随堂练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试随堂练习题,共32页。

    初中数学沪科版九年级下册第24章 圆综合与测试巩固练习:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试巩固练习,共30页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。

    沪科版第24章 圆综合与测试巩固练习:

    这是一份沪科版第24章 圆综合与测试巩固练习,共36页。试卷主要包含了下列判断正确的个数有,下列叙述正确的有个.等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map