开学活动
搜索
    上传资料 赚现金

    精品试卷沪科版九年级数学下册第24章圆同步练习试卷

    精品试卷沪科版九年级数学下册第24章圆同步练习试卷第1页
    精品试卷沪科版九年级数学下册第24章圆同步练习试卷第2页
    精品试卷沪科版九年级数学下册第24章圆同步练习试卷第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试课后复习题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试课后复习题,共34页。
    沪科版九年级数学下册第24章圆同步练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、计算半径为1,圆心角为的扇形面积为( )
    A. B. C. D.
    2、下列语句判断正确的是(  )
    A.等边三角形是轴对称图形,但不是中心对称图形
    B.等边三角形既是轴对称图形,又是中心对称图形
    C.等边三角形是中心对称图形,但不是轴对称图形
    D.等边三角形既不是轴对称图形,也不是中心对称图形
    3、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )

    A.30° B.60°
    C.90° D.120°
    4、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是( )

    A. B.1 C.2 D.
    5、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )

    A.36 cm B.27 cm C.24 cm D.15 cm
    6、如图,四边形内接于,如果它的一个外角,那么的度数为( )

    A. B. C. D.
    7、如图,AB是⊙O的直径,弦,,,则阴影部分图形的面积为( )

    A. B. C. D.
    8、如图,在中,,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )

    A.1 B.2 C.3 D.4
    9、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )

    A.1cm B.2cm C.2cm D.4cm
    10、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为( )

    A. B. C. D.8
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、小明烘焙了几款不同口味的饼干,分别装在同款的圆柱形盒子中.为区别口味,他打算制作“** 饼干”字样的矩形标签粘贴在盒子侧面.为了获得较好的视觉效果,粘贴后标签上边缘所在弧所对的圆心角为90°(如图).已知该款圆柱形盒子底面半径为6 cm,则标签长度l应为_______ cm.(π取3.1)

    2、一个五边形共有__________条对角线.
    3、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为 _____.

    4、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是______米.

    5、如图,正方形ABCD的边长为1,⊙O经过点C,CM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边AB,AD于点G,H.BD与CG,CH分别交于点E,F,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:
    ①HD=2BG;②∠GCH=45°;③H,F,E,G四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有 _____(填写所有正确结论的序号).

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,为的直径,为的切线,弦,直线交的延长线于点,连接.

    求证:(1);
    (2).
    2、在等边中,将线段AB绕点A顺时针旋转得到线段AD.

    (1)若线段DA的延长线与线段BC相交于点E(不与点B,C重合),写出满足条件的α的取值范围;
    (2)在(1)的条件下连接BD,交CA的延长线于点F.
    ①依题意补全图形;②用等式表示线段AE,AF,CE之间的数量关系,并证明.
    3、阅读下列材料,完成相应任务:如图①,是⊙O的内接三角形,是⊙O的直径,平分交⊙O于点,连接,过点作⊙O的切线,交的延长线于点.则.下面是证明的部分过程:

    证明:如图②,连接,
    是⊙O的直径,,
    ①________.(1)
    为⊙O的切线,,
    ,(2)
    由(1)(2)得,②________________.
    平分.

    ③________,

    任务:
    (1)请按照上面的证明思路,补全证明过程:①________,②________,③________;
    (2)若,求的长.
    4、新定义:如图①,已知,在内部画射线OC,得到三个角,分别为、、.若这三个角中有一个角是另外一个角的2倍,则称射线OC为的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)

    (阅读理解)(1)角的平分线______这个角的“幸运线”;(填“是”或“不是”)
    (初步应用)(2)如图①,,射线OC为的“幸运线”,则的度数为______;(直接写出答案)
    (解决问题)
    (3)如图②,已知,射线OM从OA出发,以每秒10°的速度绕O点顺时针旋转,同时,射线ON从OB出发,以每秒15°的速度绕O点顺时针旋转,设运动的时间为t秒.若OM、ON、OB三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求运动的时间t的值.
    (实际运用)
    (4)周末,小丽帮妈妈到附近的“中通快递”网点取包裹,出家门时小丽看了看时钟,恰好是下午3点整,取好包裹回到家时,小丽再看了看时钟,还没有到下午3点半,但此时分针与时针恰好重合.问小丽帮妈妈取包裹用了多少分钟?
    5、在平面直角坐标系xOy中,对于点P,O,Q给出如下定义:若OQ<PO<PQ且PO≤2,我们称点P是线段OQ的“潜力点”
    已知点O(0,0),Q(1,0)
    (1)在P1(0,-1),P2(,),P3(-1,1)中是线段OQ的“潜力点”是_____________;
    (2)若点P在直线y=x上,且为线段OQ的“潜力点”,求点P横坐标的取值范围;
    (3)直线y=2x+b与x轴交于点M,与y轴交于点N,当线段MN上存在线段OQ 的“潜力点”时,直接写出b的取值范围


    -参考答案-
    一、单选题
    1、B
    【分析】
    直接根据扇形的面积公式计算即可.
    【详解】

    故选:B.
    【点睛】
    本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.
    2、A
    【分析】
    根据等边三角形的对称性判断即可.
    【详解】
    ∵等边三角形是轴对称图形,但不是中心对称图形,
    ∴B,C,D都不符合题意;
    故选:A.
    【点睛】
    本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.
    3、B
    【分析】
    由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.
    【详解】
    解:因为每次旋转相同角度,旋转了六次,
    且旋转了六次刚好旋转了一周为360°,
    所以每次旋转相同角度 .
    故选:B.
    【点睛】
    本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.
    4、A
    【分析】
    取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
    【详解】
    解:如图,取BC的中点G,连接MG,

    ∵旋转角为60°,
    ∴∠MBH+∠HBN=60°,
    又∵∠MBH+∠MBC=∠ABC=60°,
    ∴∠HBN=∠GBM,
    ∵CH是等边△ABC的对称轴,
    ∴HB=AB,
    ∴HB=BG,
    又∵MB旋转到BN,
    ∴BM=BN,
    在△MBG和△NBH中,

    ∴△MBG≌△NBH(SAS),
    ∴MG=NH,
    根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
    此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,
    ∴MG=CG=,
    ∴HN=,
    故选A.
    【点睛】
    本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
    5、C
    【分析】
    连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可.
    【详解】
    解:连接,过点作于点,交于点,如图所示:

    则,
    的直径为,

    在中,,

    即水的最大深度为,
    故选:C.
    【点睛】
    本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    6、D
    【分析】
    由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD=2∠A=128°.
    【详解】


    ∵四边形内接于

    又∵
    ∴.
    故选:D.
    【点睛】
    本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.
    7、D
    【分析】
    根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.
    【详解】
    解:设AB与CD交于点E,
    ∵AB是⊙O的直径,弦CD⊥AB,CD=2,如图,

    ∴CE=CD=,∠CEO=∠DEB=90°,
    ∵∠CDB=30°,
    ∴∠COB=2∠CDB=60°,
    ∴∠OCE=30°,
    ∴,
    ∴,
    又∵,即
    ∴,
    在△OCE和△BDE中,

    ∴△OCE≌△BDE(AAS),

    ∴阴影部分的面积S=S扇形COB=,
    故选D.
    【点睛】
    本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.
    8、B
    【分析】
    由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2.
    【详解】
    由题意以及旋转的性质知AD=AB,∠BAD=60°
    ∴∠ADB=∠ABD
    ∵∠ADB+∠ABD+∠BAD=180°
    ∴∠ADB=∠ABD=60°
    故为等边三角形,即AB= AD =BD=2
    则CD=BC-BD=4-2=2
    故选:B.
    【点睛】
    本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.
    9、D
    【分析】
    根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.
    【详解】
    解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于

    设半径为r,即OA=OB=AB=r,
    OM=OA•sin∠OAB=,
    ∵圆O的内接正六边形的面积为(cm2),
    ∴△AOB的面积为(cm2),
    即,

    解得r=4,
    故选:D.
    【点睛】
    本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.
    10、A
    【分析】
    过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.
    【详解】
    解:如图,过点作于点,连接,

    AB是的直径,,,



    在中,


    故选A
    【点睛】
    本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.
    二、填空题
    1、9.3
    【分析】
    根据弧长公式进行计算即可,
    【详解】
    解:粘贴后标签上边缘所在弧所对的圆心角为90°,底面半径为6 cm,
    cm,
    故答案为:
    【点睛】
    本题考查了弧长公式,牢记弧长公式是解题的关键.
    2、5
    【分析】
    由n边形的对角线有: 条,再把代入计算即可得.
    【详解】
    解:边形共有条对角线,
    五边形共有条对角线.
    故答案为:5
    【点睛】
    本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键.
    3、
    【分析】
    连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,,,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.
    【详解】
    解:如图所示,连接OB,交AC于点D,

    ∵四边形OABC为平行四边形,,
    ∴四边形OABC为菱形,
    ∴,,,
    ∵,
    ∴为等边三角形,
    ∴,
    ∴,
    在中,设,则,
    ∴,
    即,
    解得:或(舍去),
    ∴的长为:,
    故答案为:.
    【点睛】
    题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.
    4、
    【分析】
    设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可.
    【详解】
    解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为,
    根据题意可得:,
    解得:,
    故答案是:.
    【点睛】
    本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解.
    5、②③④
    【分析】
    根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PC≥AC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.
    【详解】
    ∵GH是⊙O的切线,M为切点,且CM是⊙O的直径,
    ∴∠CMH=90°,
    ∵四边形ABCD是正方形,
    ∴∠CMH=∠CDH=90°,
    ∵CM=CD,CH=CH,
    ∴△CMH≌△CDH,
    ∴HD=HM,∠HCM=∠HCD,
    同理可证,∴GM=GB,∠GCB=∠GCM,
    ∴GB+DH=GH,无法确定HD=2BG,
    故①错误;
    ∵∠HCM+∠HCD+∠GCB+∠GCM=90°,
    ∴2∠HCM+2∠GCM=90°,
    ∴∠HCM+∠GCM=45°,
    即∠GCH=45°,
    故②正确;

    ∵△CMH≌△CDH,BD是正方形的对角线,
    ∴∠GHF=∠DHF,∠GCH=∠HDF=45°,
    ∴∠GHF+∠GEF=∠DHF +∠GCH+∠EFC
    =∠DHF +∠HDF+∠HFD
    =180°,
    根据对角互补的四边形内接于圆,
    ∴H,F,E,G四点在同一个圆上,
    故③正确;
    ∵正方形ABCD的边长为1,

    =1
    =,∠GAH=90°,AC=
    取GH的中点P,连接PA,
    ∴GH=2PA,
    ∴=,
    ∴当PA取最小值时,有最大值,
    连接PC,AC,
    则PA+PC≥AC,
    ∴PA≥AC- PC,
    ∴当PC最大时,PA最小,
    ∵直径是圆中最大的弦,
    ∴PC=1时,PA最小,
    ∴当A,P,C三点共线时,且PC最大时,PA最小,
    ∴PA=-1,
    ∴最大值为:1-(-1)=2-,
    ∴四边形CGAH面积的最大值为2,
    ∴④正确;
    故答案为: ②③④.
    【点睛】
    本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.
    三、解答题
    1、(1)见解析;(2)见解析
    【分析】
    (1)连接,根据,可证.从而可得,,即可证明,故;
    (2)证明,可得,即可证明.
    【详解】
    证明:(1)连接,如图:

    ∵为的直径,为的切线,
    ∴,
    ∵,
    ∴,.
    ∵,
    ∴,
    ∴.
    在和中,

    ∴,
    ∴,
    ∵为的直径,
    ∴,即,
    ∴,
    ∵,
    ∴,
    ∴,即,
    ∵,
    ∴;
    (2)由(1)知:,
    又∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴.
    【点睛】
    本题考查圆中的相似三角形判定与性质,涉及三角形全等的判定与性质,解题的关键是证明,从而得到.
    2、(1);(2)①见解析;②AE=AF+CE,证明见解析.
    【分析】
    (1)根据“线段DA的延长线与线段BC相交于点E”可求解;
    (2)①根据要求画出图形,即可得出结论;②在AE上截取AH=AF,先证△AFD≌△AHC,再证∠CHE=∠HCE,即可得出结果.
    【详解】
    (1)如图:AD只能在锐角∠EAF内旋转符合题意

    故α的取值范围为:;
    (2)补全图形如下:

    (3)AE=AF+CE,
    证明:在AE上截取AH=AF,由旋转可得:AB=AD,
    ∴∠D=∠ABF,
    ∵△ABC为等边三角形,
    ∴AB=AC,∠BAC=∠ACB=60°,
    ∴AD=AC,
    ∵∠DAF=∠CAH,
    ∴△AFD≌△AHC,
    ∴∠AFD=∠AHC,∠D=∠ACH,
    ∴∠AFB=∠CHE,
    ∵∠AFB+∠ABF=∠ACH+∠HCE=60°,
    ∴∠CHE+∠D=∠D+∠HCE=60°,
    ∴∠CHE=∠HCE,
    ∴CE=HE,
    ∴AE=AH+HE=AF+CE.
    【点睛】
    本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线.
    3、(1),,;(2)
    【分析】
    (1)由是⊙O的直径,得到∠ODB.再由为⊙O的切线,得到,即可推出∠ODA=∠BDE,由角平分线的定义可得,由,得到,即可证明;
    (2)在直角△ODE中利用勾股定理求解即可.
    【详解】
    解:(1)如图②,连接,
    是⊙O的直径,

    ∠ODB.(1)
    为⊙O的切线,

    ,(2)
    由(1)(2)得,∠ODA=∠BDE.
    平分,
    ∴.


    ∠ODA,


    故答案为:① ,② ,③ ;
    (2)为的切线,





    在中,

    【点睛】
    本题主要考查了切线的性质,角平分线的定义,等腰三角形的性质,直径所对的圆周角是直角,勾股定理等等,解题的关键在于能够熟练掌握切线的性质.
    4、(1)是;(2)16°或24°或32°;(3)2或或;(4).
    【分析】
    (1)根据幸运线定义即可求解;
    (2)分3种情况,根据幸运线定义得到方程求解即可;
    (3)根据幸运线定义得到方程求解即可;
    (4)利用时针1分钟走,分针1分钟走,可解答问题.
    【详解】
    解:(1)一个角的平分线是这个角的“幸运线”;
    故答案为:是;
    (2)①设∠AOC=x,则∠BOC=2x,
    由题意得,x+2x=48°,解得x=16°,
    ②设∠AOC=x,则∠BOC=x,
    由题意得,x+x=48°,解得x=24°,
    ③设∠AOC=x,则∠BOC=x,
    由题意得,x+x=48°,解得x=32°,
    故答案为:16°或24°或32°;
    (3)OB是射线OM与ON的幸运线,
    则∠BOM=∠MON,即50-10t=(50-10t+15t),解得t=2;
    ∠BOM=∠MON,即50-10t=(50-10t+15t),解得t=;
    ∠BOM=∠MON,即50-10t=(50-10t+15t),解得t=;
    故t的值是2或或;
    (4)时针1分钟走,分针1分钟走,
    设小丽帮妈妈取包裹用了x分钟,
    则有0.5x+3×30=6x,解得:x=.
    【点睛】
    本题考查了旋转的性质,幸运线定义,学生的阅读理解能力及知识的迁移能力.理解“幸运线”的定义是解题的关键.
    5、(1);(2);(3)或
    【分析】
    (1)分别计算出OQ、PO和PQ的长度,比较即可得出答案;
    (2)先判断点P在以O为圆心,1为半径的圆外且点P在线段OQ垂直平分线的左侧,结合PO≤2,点P在以O为圆心,2为半径的圆上或圆内,可得点P在如图所示的线段AB上(不包含点B),过作轴,过作轴,垂足分别为 再根据图形的性质求解 从而可得答案;
    (3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,而PO<PQ,点P在线段OQ垂直平分线的左侧,再分两种情况讨论:当时,当时,分别画出两种情况下的临界直线 再根据临界直线经过的特殊点求解的值,再确定范围即可.
    【详解】
    解:(1) O(0,0),Q(1,0),

    P1(0,-1),P2(,),P3(-1,1)
    不满足OQ<PO<PQ且PO≤2,
    所以不是线段OQ的“潜力点”,
    同理:
    所以不满足OQ<PO<PQ且PO≤2,
    所以不是线段OQ的“潜力点”,
    同理:

    所以满足:OQ<PO<PQ且PO≤2,
    所以是线段OQ的“潜力点”,
    故答案为:P3
    (2)∵点P为线段OQ的“潜力点”,
    ∴OQ<PO<PQ且PO≤2,
    ∵OQ<PO,
    ∴点P在以O为圆心,1为半径的圆外
    ∵PO<PQ,
    ∴点P在线段OQ垂直平分线的左侧,而的垂直平分线为:
    ∵PO≤2,
    ∴点P在以O为圆心,2为半径的圆上或圆内
    又∵点P在直线y=x上,
    ∴点P在如图所示的线段AB上(不包含点B)
    过作轴,过作轴,垂足分别为

    由题意可知△BOC和 △AOD是等腰三角形,

    ∴-≤xp<-
    (3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,
    而PO<PQ,点P在线段OQ垂直平分线的左侧
    当时,过时,
    即函数解析式为:
    此时 则

    当与半径为2的圆相切于时,则




    当时,如图,同理可得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,
    而PO<PQ,点P在线段OQ垂直平分线的左侧,

    同理:当过 则 直线为
    在直线上,
    此时
    当过时, 则

    所以此时:
    综上:的范围为:1<b≤或<b<-1
    【点睛】
    本题考查的是新定义情境下的知识运用,圆的基本性质,圆的切线的性质,一次函数的综合应用,锐角三角函数的应用,勾股定理的应用,数形结合是解本题的关键.

    相关试卷

    沪科版九年级下册第24章 圆综合与测试课后练习题:

    这是一份沪科版九年级下册第24章 圆综合与测试课后练习题,共25页。试卷主要包含了如图,是的直径,,等边三角形等内容,欢迎下载使用。

    数学九年级下册第24章 圆综合与测试同步训练题:

    这是一份数学九年级下册第24章 圆综合与测试同步训练题,共37页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试课后复习题:

    这是一份沪科版九年级下册第24章 圆综合与测试课后复习题,共32页。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map