终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析沪科版九年级数学下册第24章圆章节测试试题(无超纲)

    立即下载
    加入资料篮
    2022年精品解析沪科版九年级数学下册第24章圆章节测试试题(无超纲)第1页
    2022年精品解析沪科版九年级数学下册第24章圆章节测试试题(无超纲)第2页
    2022年精品解析沪科版九年级数学下册第24章圆章节测试试题(无超纲)第3页
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试当堂检测题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共36页。试卷主要包含了在圆内接四边形ABCD中,∠A,已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆章节测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、若的圆心角所对的弧长是,则此弧所在圆的半径为( )
    A.1 B.2 C.3 D.4
    2、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )
    A.相离 B.相切 C.相交 D.相交或相切
    3、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为( )

    A.4 B.6 C.8 D.10
    4、如图,在Rt中,.以点为圆心,长为半径的圆交于点,则的长是( )

    A.1 B. C. D.2
    5、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为( )
    A.140° B.100° C.80° D.40°
    6、已知⊙O的半径为4,,则点A在( )
    A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定
    7、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(  )

    A. B.
    C.或 D.(﹣2,0)或(﹣5,0)
    8、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )

    A. B. C. D.
    9、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是( )
    A.60 B.90 C.120 D.180
    10、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )

    A.6 B. C.3 D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC,若弦BC的长度为,则∠BAC=________度.

    2、如图,将△ABC绕点A顺时针旋转得到△ADE,若∠DAE=110°,∠B=40°,则∠C的度数为________.

    3、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到 Rt△OA2A3,Rt△OA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.

    4、如图,一次函数的图像与x轴,y轴分别相交于点A,点B,将它绕点O逆时针旋转90°后,与x轴相交于点C,我们将图像过点A,B,C的二次函数叫做与这个一次函数关联的二次函数.如果一次函数的关联二次函数是(),那么这个一次函数的解析式为______.

    5、已知O、I分别是△ABC的外心和内心,∠BIC=125°,则∠BOC的大小是 ___度.
    三、解答题(5小题,每小题10分,共计50分)
    1、在正方形ABCD中,过点B作直线l,点E在直线l上,连接CE,DE,其中,过点C作于点F,交直线l于点H.
    (1)当直线l在如图①的位置时
    ①请直接写出与之间的数量关系______.
    ②请直接写出线段BH,EH,CH之间的数量关系______.
    (2)当直线l在如图②的位置时,请写出线段BH,EH,CH之间的数量关系并证明;
    (3)已知,在直线l旋转过程中当时,请直接写出EH的长.

    2、如图,在平面直角坐标系中,有抛物线,已知OA =OC =3OB,动点P在过A,B,C三点的抛物线上.
    (1)求抛物线的解析式;
    (2)求过A,B,C三点的圆的半径;
    (3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;

    3、如图,AB是⊙O的直径,弦CD⊥AB于点E,AM是△ACD的外角∠DAF的平分线.

    (1)求证:AM是⊙O的切线;
    (2)连接CO并延长交AM于点N,若⊙O的半径为2,∠ANC = 30°,求CD的长.
    4、如图1,在⊙O中,AC=BD,且AC⊥BD,垂足为点E.

    (1)求∠ABD的度数;
    (2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;
    (3)在(2)的条件下,求的长.
    5、如图,在中,,,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且.将线段AE绕点A逆时针旋转90°,得到线段AF,连接BE,FE,连接FC并延长交BE于点G.

    (1)依题意补全图形;
    (2)求的度数;
    (3)连接GA,用等式表示线段GA,GB,GC之间的数量关系,并证明.

    -参考答案-
    一、单选题
    1、C
    【分析】
    先设半径为r,再根据弧长公式建立方程,解出r即可
    【详解】
    设半径为r,
    则周长为2πr,
    120°所对应的弧长为
    解得r=3
    故选C
    【点睛】
    本题考查弧长计算,牢记弧长公式是本题关键.
    2、B
    【分析】
    圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.
    【详解】
    解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm,
    ⊙O的半径等于圆心O到直线l的距离,
    直线l与⊙O的位置关系为相切,
    故选B
    【点睛】
    本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.
    3、A
    【分析】
    根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.
    【详解】
    解:∵AB是⊙O的直径,
    ∴ ,
    ∵∠BAC=30°,BC=2,
    ∴.
    故选:A
    【点睛】
    本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.
    4、B
    【分析】
    利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CE⊥AB于E,利用,求出BE,根据垂径定理求出BD即可得到答案.
    【详解】
    解: 在Rt中,,
    ∴BC=3,,
    连接CD,过点C作CE⊥AB于E,
    ∵,
    ∴,
    解得,
    ∵CB=CD,CE⊥AB,
    ∴,
    ∴,
    故选:B.

    【点睛】
    此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.
    5、C
    【分析】
    ,,,进而求解的值.
    【详解】
    解:由题意知





    故选C.
    【点睛】
    本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.
    6、C
    【分析】
    根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.
    【详解】
    解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,
    ∴d>r,
    ∴点A在⊙O外,
    故选:C.
    【点睛】
    本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.
    7、C
    【分析】
    由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
    【详解】
    解:∵直线交x轴于点A,交y轴于点B,
    ∴令x=0,得y=-3,令y=0,得x=-4,
    ∴A(-4,0),B(0,-3),
    ∴OA=4,OB=3,
    ∴AB=5,
    设⊙P与直线AB相切于D,
    连接PD,

    则PD⊥AB,PD=1,
    ∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
    ∴△APD∽△ABO,
    ∴,
    ∴,
    ∴AP= ,
    ∴OP= 或OP= ,
    ∴P或P,
    故选:C.
    【点睛】
    本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
    8、A
    【分析】
    连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
    【详解】
    解:连结OC,
    ∵以边上一点为圆心作,恰与边,分别相切于点A, ,
    ∴DC=AC,OC平分∠ACD,
    ∵,,
    ∴∠ACD=90°-∠B=60°,
    ∴∠OCD=∠OCA==30°,
    在Rt△ABC中,AC=ABtanB=3×,
    在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
    ∴OD=OA=1,DC=AC=,
    ∴,,
    ∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
    ∴,
    S阴影=.
    故选择A.

    【点睛】
    本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
    9、C
    【分析】
    根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.
    【详解】
    解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.
    故选C.
    【点睛】
    本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.
    10、D
    【分析】
    如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
    【详解】
    解:如图所示,设圆的圆心为O,连接OC,OB,
    ∵AC,AB都是圆O的切线,
    ∴∠OCA=∠OBA=90°,OC=OB,
    又∵OA=OA,
    ∴Rt△OCA≌Rt△OBA(HL),
    ∴∠OAC=∠OAB,
    ∵∠DAC=60°,
    ∴,
    ∴∠AOB=30°,
    ∴OA=2AB=6,
    ∴,
    ∴圆O的直径为,
    故选D.

    【点睛】
    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
    二、填空题
    1、60
    【分析】
    在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圆周角定理即可解决问题.
    【详解】
    解:如图作OE⊥BC于E.

    ∵OE⊥BC,
    ∴BE=EC=,∠BOE=∠COE,
    ∴OE=1,
    ∴OB=2OE,
    ∴∠OBE=30°,
    ∴∠BOE=∠COE=60°,
    ∴∠BOC=120°,
    ∴∠BAC=60°,
    故答案为:60.
    【点睛】
    本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
    2、
    【分析】
    先根据旋转的性质求得,再运用三角形内角和定理求解即可.
    【详解】
    解:将△ABC绕点A顺时针旋转得到△ADE,∠DAE=110°



    故答案是:30°.
    【点睛】
    本题主要考查了旋转的性质、三角形内角和定理等知识点,灵活运用旋转的性质是解答本题的关键.
    3、22020
    【分析】
    根据,,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标.
    【详解】
    解:∵∠OA0A1=90°,∠A1OA0=60°,点A0的坐标是(1,0),
    ∴OA0=1,
    ∴点A1 的横坐标是 1=20,
    ∴OA1=2OA0=2,
    ∵∠A2A1O=90°,∠A2OA1=60°,
    ∴OA2=2OA1=4,
    ∴点A2 的横坐标是- OA2=-2=-21,
    依次进行下去,Rt△OA2A3,Rt△OA3A4…,
    同理可得:
    点A3 的横坐标是﹣2OA2=﹣8=﹣23,
    点A4 的横坐标是﹣8=﹣23,
    点A5 的横坐标是 OA5=×2OA4=2OA3=4OA2=16=24,
    点A6 的横坐标是2OA5=2×2OA4=23OA3=64=26,
    点A7 的横坐标是64=26,

    发现规律,6次一循环,





    2021÷6=336……5
    则点A2021的横坐标与的坐标规律一致是 22020.
    故答案为:22020.
    【点睛】
    本题考查了规律型——点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n在轴上,且坐标为.
    4、
    【分析】
    由题意可知二次函数与坐标轴的三个交点坐标为(0,k),(1,0),(-k,0),将其代入抛物线()即可得m、k的二元一次方程组,即可解出,故这个一次函数的解析式为.
    【详解】
    一次函数与y轴的交点为(0,k),与x轴的交点为(1,0)
    绕O点逆时针旋转90°后,与x轴的交点为(-k,0)
    即(0,k),(1,0),(-k,0)过抛物线()


    将代入有

    整理得
    解得k=3或k=-1(舍)
    将k=3代入得
    故方程组的解为
    则一次函数的解析式为
    故答案为:.
    【点睛】
    本题考查了一次函数和二次函数的图象及其性质,解二元一次方程组,结合旋转的性质以及图象得出抛物线与坐标轴的三个交点坐标是解题的关键.
    5、140
    【分析】
    作的外接圆,根据三角形内心的性质可得:,,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得.
    【详解】
    解:如图所示,作的外接圆,

    ∵点I是的内心,
    ∴BI,CI分别平分和,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵点O是的外心,
    ∴,
    故答案为:140.
    【点睛】
    题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键.
    三、解答题
    1、(1)①;②;(2);证明见解析;(3)或.
    【分析】
    (1)①,根据CE=BC,四边形ABCD为正方形,可得BC=CD=CE,根据CF⊥DE,得出CF平分∠ECD即可;
    ②,过点C作CG⊥BE于G,根据BC=EC,得出∠ECG=∠BCG=,根据∠ECH=∠HCD=,可得CG=HG,根据勾股定理在Rt△GHC中,,根据GE=,得出即可;
    (2),过点C作交BE于点M,得出,先证得出,可证是等腰直角三角形,可得即可;
    (3)或,根据,分两种情况,当∠ABE=90°-15°=75°时,BC=CE,先证△CDE为等边三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根据CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根据勾股定理HE=,当∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根据30°直角三角形先证得出CF=,根据勾股定理EF=,再证FH=FE,得出EH=即可.
    【详解】
    解:(1)①
    ∵CE=BC,四边形ABCD为正方形,
    ∴BC=CD=CE,
    ∵CF⊥DE,
    ∴CF平分∠ECD,
    ∴∠ECH=∠HCD,
    故答案为:∠ECH=∠HCD;

    ②,过点C作CG⊥BE于G,
    ∵BC=EC,
    ∴∠ECG=∠BCG=,
    ∵∠ECH=∠HCD=,
    ∴∠GCH=∠ECG+∠ECF=+,
    ∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,
    ∴CG=HG,
    在Rt△GHC中,
    ∴,
    ∵GE=,
    ∴GH=GE+EH=,
    ∴,
    ∴,
    ∴,
    故答案是:;

    (2),
    证明:过点C作交BE于点M,

    则,
    ∴⁰,
    ∴,
    ∵,,
    ∴,,
    ∴,
    ∴,
    ∴,,
    ∴是等腰直角三角形,
    ∴,
    ∵,
    ∴,
    (3)或,
    ∵,分两种情况,
    当∠ABE=90°-15°=75°时,
    ∵BC=CE,
    ∴∠CBE=∠CEB=15°,
    ∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,
    ∴∠DCE=∠BCE-∠BCD=150°=90°=60°,
    ∵CE=CD,
    ∴△CDE为等边三角形,
    ∴DE=CD=AB=2,∠DEC=60°,
    ∴∠FEH=∠DEC=∠CEB=60°-15°=45°,
    ∵CF⊥DE,
    ∴DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,
    ∴EF=HF=1,
    ∴HE=,

    当∠ABE=90°+15°=105°,
    ∵BC=CE,∠CBE=∠CEB=15°,
    ∴∠BCE=180°-∠CBE-∠CEB=150°,
    ∴∠DCE=360°-∠DCB-∠BCE=120°,
    ∵CE=BC=CD,CH⊥DE,
    ∴∠FCE=,
    ∴∠FEC=180°-∠CFE-∠FCE=30°,
    ∴CF=,
    ∴EF=,
    ∵∠HEF=∠CEB+∠CEF=15°+30°=45°,
    ∴∠FHE=180°-∠HFE-∠FEH=45°=∠FEH,
    ∴FH=FE,
    ∴EH=,
    ∴或.

    【点睛】
    本题考查正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差,掌握正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差是解题关键.
    2、(1)y=-x2+2x+3;(2);(3)点P(1,4)或(-2,-5).
    【分析】
    (1)3=OC=OA=3OB,故点A、B、C的坐标分别为:(0,3)、(-1,0)、(3,0),即可求解;
    (2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),即可求解;
    (3)分两种情况讨论,利用等腰直角三角形的性质,即可求解.
    【详解】
    解:(1)令x=0,则y=3,
    则点A的坐标为(3,0),
    根据题意得:OC=3=OA=3OB,
    故点B、C的坐标分别为:(-1,0)、(3,0),
    则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3),
    把(3,0)代入得-3a=3,
    解得:a=-1,
    故抛物线的表达式为:y=-x2+2x+3;
    (2)圆的圆心在BC的中垂线上,故设圆心R(1,m),
    则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),
    则圆的半径为:;
    (3)过点A、C分别作直线AC的垂线,交抛物线分别为P、P1,

    设点P(x,-x2+2x+3),过点P作PQ⊥轴于点Q,
    ∵OA =OC,∠PAC=90°,
    ∴∠ACO=∠OAC=45°,
    ∵∠PAC=90°,
    ∴∠PAQ=45°,
    ∴△PAQ 是等腰直角三角形,
    ∴PQ=AQ=x,
    ∴AQ+AO=x+3=-x2+2x+3,
    解得:(舍去),
    ∴点P(1,4);
    设点P1(m,-m2+2m+3),过点P1作P1D⊥轴于点D,
    同理得△P1CD是等腰直角三角形,且点P1在第三象限,即m

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试同步训练题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步训练题,共34页。

    沪科版九年级下册第24章 圆综合与测试练习题:

    这是一份沪科版九年级下册第24章 圆综合与测试练习题,共32页。试卷主要包含了如图,点A等内容,欢迎下载使用。

    数学九年级下册第24章 圆综合与测试练习题:

    这是一份数学九年级下册第24章 圆综合与测试练习题,共30页。试卷主要包含了下列叙述正确的有个.等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map