终身会员
搜索
    上传资料 赚现金

    精品试卷沪科版九年级数学下册第24章圆专项测试试题(无超纲)

    立即下载
    加入资料篮
    精品试卷沪科版九年级数学下册第24章圆专项测试试题(无超纲)第1页
    精品试卷沪科版九年级数学下册第24章圆专项测试试题(无超纲)第2页
    精品试卷沪科版九年级数学下册第24章圆专项测试试题(无超纲)第3页
    还剩31页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试同步训练题

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步训练题,共34页。


    沪科版九年级数学下册第24章圆专项测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,点A,B,C均在⊙O上,连接OA,OB,AC,BC,如果OA⊥OB,那么∠C的度数为( )

    A.22.5° B.45° C.90° D.67.5°
    2、下列图形中,是中心对称图形,但不是轴对称图形的是( )
    A. B. C. D.
    3、如图,在Rt△ABC中,,,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的( )

    A.①②③ B.①②④ C.①③④ D.②③④
    4、下列图形中,可以看作是中心对称图形的是( )
    A. B. C. D.
    5、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是( )
    A.60 B.90 C.120 D.180
    6、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )

    A.平移 B.翻折 C.旋转 D.以上三种都不对
    7、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是( )

    A. B.1 C.2 D.
    8、下列汽车标志中既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    9、下列图形中,既是轴对称图形又是中心对称图形的是(  )
    A. B.
    C. D.
    10、下列图形中,是中心对称图形也是轴对称图形的是(  )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______.


    2、如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°

    3、如图,半圆O中,直径AB=30,弦CD∥AB,长为6π,则由与AC,AD围成的阴影部分面积为_______.

    4、小明烘焙了几款不同口味的饼干,分别装在同款的圆柱形盒子中.为区别口味,他打算制作“** 饼干”字样的矩形标签粘贴在盒子侧面.为了获得较好的视觉效果,粘贴后标签上边缘所在弧所对的圆心角为90°(如图).已知该款圆柱形盒子底面半径为6 cm,则标签长度l应为_______ cm.(π取3.1)

    5、如图,将Rt△ABC的斜边AB与量角器的直径恰好重合,B点与零刻度线的一端重合,∠ABC=38°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是 ___.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,AB为⊙O的弦,OC⊥AB于点M,交⊙O于点C.若⊙O的半径为10,OM:MC=3:2,求AB的长.

    2、如图,△ABC内接于⊙O,D是⊙O的直径AB的延长线上一点,∠DCB=∠OAC.过圆心O作BC的平行线交DC的延长线于点E.

    (1)求证:CD是⊙O的切线;
    (2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.
    3、如图,AB是⊙O的直径,点D,E在⊙O上,四边形BDEO是平行四边形,过点D作交AE的延长线于点C.

    (1)求证:CD是⊙O的切线.
    (2)若,求阴影部分的面积.
    4、如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC^OA于点C,过点B作O的切线交CE的延长线于点D .

    (1)求证:DB=DE;
    (2)若AB=12,BD=5,求AC长.
    5、在等边中,是边上一动点,连接,将绕点顺时针旋转120°,得到,连接.

    (1)如图1,当、、三点共线时,连接,若,求的长;
    (2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;
    (3)如图3,在(2)的条件下,连接、交于点.若,请直接写出的值.

    -参考答案-
    一、单选题
    1、B
    【分析】
    根据同弧所对的圆周角是圆心角的一半即可得.
    【详解】
    解:∵,
    ∴,
    ∴,
    故选:B.
    【点睛】
    题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.
    2、B
    【分析】
    根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.
    【详解】
    解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;
    B、是中心对称图形但不是轴对称图形,故符合题意;
    C、既不是轴对称图形也不是中心对称图形,故不符合题意;
    D、是轴对称图形但不是中心对称图形,故不符合题意;
    故选B.
    【点睛】
    本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.
    3、B
    【分析】
    根据,,点D、E分别是AB、AC的中点.得出∠DAE=90°,AD=AE=,可证∠DAB=∠EAC,再证△DAB≌△EAC(SAS),可判断①△AEC≌△ADB正确;作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,根据△AEC≌△ADB,得出∠DBA=∠ECA,可证∠P=∠BAC=90°,CP为⊙A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判断②CP存在最大值为正确;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判断③BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,可求∠ACE=30°,根据圆周角定理得出∠AOP=2∠ACE=60°,当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,可得∠ABD=30°根据圆周角定理得出∠AOP′=2∠ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断④点P运动的路径长为正确即可.
    【详解】
    解:∵,,点D、E分别是AB、AC的中点.
    ∴∠DAE=90°,AD=AE=,
    ∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,
    ∴∠DAB=∠EAC,
    在△DAB和△EAC中,

    ∴△DAB≌△EAC(SAS),
    故①△AEC≌△ADB正确;

    作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,
    ∵△AEC≌△ADB,
    ∴∠DBA=∠ECA,
    ∴∠PBA+∠P=∠ECP+∠BAC,
    ∴∠P=∠BAC=90°,
    ∵CP为⊙A的切线,
    ∴AE⊥CP,
    ∴∠DPE=∠PEA=∠DAE=90°,
    ∴四边形DAEP为矩形,
    ∵AD=AE,
    ∴四边形DAEP为正方形,
    ∴PE=AE=3,
    在Rt△AEC中,CE=,
    ∴CP最大=PE+EC=3+,
    故②CP存在最大值为正确;

    ∵△AEC≌△ADB,
    ∴BD=CE=,
    在Rt△BPC中,BP最小=,
    BP最短=BD-PD=-3,
    故③BP存在最小值为不正确;
    取BC中点为O,连结AO,OP,
    ∵AB=AC=6,∠BAC=90°,
    ∴BP=CO=AO=,
    当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,
    ∴∠ACE=30°,
    ∴∠AOP=2∠ACE=60°,
    当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,
    ∴∠ABD=30°,
    ∴∠AOP′=2∠ABD=60°,
    ∴点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,
    ∵∠POP=∠POA+∠AOP′=60°+60°=120°,
    ∴L.
    故④点P运动的路径长为正确;
    正确的是①②④.
    故选B.

    【点睛】
    本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键.
    4、B
    【分析】
    把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.
    【详解】
    A.不是中心对称图形,故本选项不符合题意;
    B.是中心对称图形,故本选项符合题意;
    C.不是中心对称图形,故本选项不符合题意;
    D.不是中心对称图形,故本选项不符合题意.
    故选:B.
    【点睛】
    本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    5、C
    【分析】
    根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.
    【详解】
    解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.
    故选C.
    【点睛】
    本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.
    6、C
    【详解】
    解:根据图形可知,这种图形的运动是旋转而得到的,
    故选:C.
    【点睛】
    本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.
    7、A
    【分析】
    取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
    【详解】
    解:如图,取BC的中点G,连接MG,

    ∵旋转角为60°,
    ∴∠MBH+∠HBN=60°,
    又∵∠MBH+∠MBC=∠ABC=60°,
    ∴∠HBN=∠GBM,
    ∵CH是等边△ABC的对称轴,
    ∴HB=AB,
    ∴HB=BG,
    又∵MB旋转到BN,
    ∴BM=BN,
    在△MBG和△NBH中,

    ∴△MBG≌△NBH(SAS),
    ∴MG=NH,
    根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
    此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,
    ∴MG=CG=,
    ∴HN=,
    故选A.
    【点睛】
    本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
    8、C
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    C、是轴对称图形,是中心对称图形,故此选项符合题意;
    D、不是轴对称图形,是中心对称图形,故此选项不符合题意;
    故选:C.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    9、B
    【详解】
    解:A.是轴对称图形,不是中心对称图形,故不符合题意;
    B.既是轴对称图形,又是中心对称图形,故符合题意;
    C.不是轴对称图形,是中心对称图形,故不符合题意;
    D.是轴对称图形,不是中心对称图形,故不符合题意.
    故选:B.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    10、C
    【分析】
    根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
    【详解】
    解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;
    B、是轴对称图形,不是中心对称图形,故B选项不符合题意;
    C、既是轴对称图形,又是中心对称图形,故C选项符合题意;
    D、是轴对称图形,但不是中心对称图形,故D选项不符合题意.
    故选:C.
    【点睛】
    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
    二、填空题
    1、6
    【分析】
    如图,连接OA、OB、OC、OD、OE、OF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.
    【详解】
    解:如图,连接OA、OB、OC、OD、OE、OF.
    ∵正六边形ABCDEF,
    ∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,
    ∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,
    ∵的周长为,
    ∴的半径为,
    正六边形的边长是6;

    【点睛】
    本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.
    2、
    【分析】
    连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB
    【详解】
    解:连接,如图,

    PA,PB分别与⊙O相切




    故答案为:
    【点睛】
    本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.
    3、45
    【分析】
    连接OC,OD,根据同底等高可知S△ACD=S△OCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.
    【详解】
    解:连接OC,OD,

    ∵直径AB=30,
    ∴OC=OD=,
    ∴CD∥AB,
    ∴S△ACD=S△OCD,
    ∵长为6π,
    ∴阴影部分的面积为S阴影=S扇形OCD=,
    故答案为:45π.
    【点睛】
    本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.
    4、9.3
    【分析】
    根据弧长公式进行计算即可,
    【详解】
    解:粘贴后标签上边缘所在弧所对的圆心角为90°,底面半径为6 cm,
    cm,
    故答案为:
    【点睛】
    本题考查了弧长公式,牢记弧长公式是解题的关键.
    5、76°或142°
    【分析】
    设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,根据圆周角定理得∠BOD=2∠BCD,根据等腰三角形的性质分BC为底边和BC为腰求∠BCD的度数即可.
    【详解】
    解:设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,
    ∵Rt△ABC的斜边AB与量角器的直径恰好重合,
    ∴A、C、B、D四点共圆,圆心为点O,
    ∴∠BOD=2∠BCD,
    ①若BC为等腰三角形的底边时,如图射线CD1,则∠BCD1=∠ABC=38°,
    连接OD1,则∠BOD1=2∠BCD1=76°;
    ②若BC为等腰三角形的腰时,
    当∠ABC为顶角时,如图射线CD2,则∠BCD2=(180°-∠ABC)÷2=71°,
    连接OD2,则∠BOD2=2∠BCD2=142°,
    当∠ABC为底角时,∠BCD=180°-2∠ABC=104°,不符合题意,舍去,
    综上,点D在量角器上对应的度数是76°或142°,
    故答案为:76°或142°.

    【点睛】
    本题考查圆周角定理、等腰三角形的性质、三角形的内角和定理,熟练掌握圆周角定理,利用分类讨论思想解决问题是解答的关键.
    三、解答题
    1、
    【分析】
    连接OA,根据⊙O的半径为10,OM:MC=3:2可求出OM的长,由勾股定理求出AM的长,再由垂径定理求出AB的长即可.
    【详解】
    解:如图,连接OA.

    ∵OM:MC=3:2,OC=10,
    ∴OM==6.
    ∵OC⊥AB,
    ∴∠OMA=90°,AB=2AM.
    在Rt△AOM中,AO=10,OM=6,
    ∴AM=8.
    ∴AB=2AM =16.
    【点睛】
    本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键.
    2、
    (1)见解析
    (2)3,2
    【分析】
    (1)由等腰三角形的性质与已知条件得出,∠OCA=∠DCB,由圆周角定理可得∠ACB=90°,进而得到∠OCD=90°,即可得出结论;
    (2)根据平行线分线段成比例定理得到,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,在Rt△OCD中,根据勾股定理求出x=1,即⊙O的半径为3,由平行线的性质得到∠OCB=∠EOC,在Rt△OCE中,可求得tan∠EOC=2,即tan∠OCB=2.
    (1)
    证明:∵OA=OC,
    ∴∠OAC=∠OCA,
    ∵∠DCB=∠OAC,
    ∴∠OCA=∠DCB,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠OCA+∠OCB=90°,
    ∴∠DCB+∠OCB=90°,
    即∠OCD=90°,
    ∴OC⊥DC,
    ∵OC是⊙O的半径,
    ∴CD是⊙O的切线;
    (2)
    ∵OE∥BC,
    ∴,
    ∵CD=4,CE=6,
    ∴,
    设BD=2x,则OB=OC=3x,OD=OB+BD=5x,
    ∵OC⊥DC,
    ∴△OCD是直角三角形,
    在Rt△OCD中,OC2+CD2=OD2,
    ∴(3x)2+42=(5x)2,
    解得,x=1,
    ∴OC=3x=3,即⊙O的半径为3,
    ∵BC∥OE,
    ∴∠OCB=∠EOC,
    在Rt△OCE中,tan∠EOC=,
    ∴tan∠OCB=tan∠EOC=2.
    【点睛】
    本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键.
    3、(1)见详解;(2)
    【分析】
    (1)连接OD,由题意易得,则有△ODB是等边三角形,然后可得△AEO也为等边三角形,进而可得OD∥AC,最后问题可求证;
    (2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圆O的半径,进而可得扇形OED和△OED的面积,则有弓形ED的面积,最后问题可求解.
    【详解】
    (1)证明:连接OD,如图所示:

    ∵四边形BDEO是平行四边形,
    ∴,
    ∴△ODB是等边三角形,
    ∴∠OBD=∠BOD=60°,
    ∴∠AOE=∠OBD=60°,
    ∵OE=OA,
    ∴△AEO也为等边三角形,
    ∴∠EAO=∠DOB=60°,
    ∴AE∥OD,
    ∴∠ODC+∠C=180°,
    ∵CD⊥AE,
    ∴∠C=90°,
    ∴∠ODC=90°,
    ∵OD是圆O的半径,
    ∴CD是⊙O的切线.
    (2)解:由(1)得∠EAO=∠AOE=∠OBD=∠BOD=60°,ED∥AB,
    ∴∠EAO=∠CED=60°,
    ∵∠AOE+∠EOD+∠BOD=180°,
    ∴∠EOD=60°,
    ∴△DEO为等边三角形,
    ∴ED=OE=AE,
    ∵CD⊥AE,∠CED=60°,
    ∴∠CDE=30°,
    ∴,
    ∵,
    ∴,
    ∴,
    设△OED的高为h,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题主要考查扇形面积公式、切线的判定定理及解直角三角形,熟练掌握扇形面积公式、切线的判定定理及解直角三角形是解题的关键.
    4、(1)见解析;(2)
    【分析】
    (1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;
    (2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.
    【详解】
    (1)如图,

    ∵DC⊥OA,
    ∴∠1+∠3=90°,
    ∵BD为切线,
    ∴OB⊥BD,
    ∴∠2+∠5=90°,
    ∵OA=OB,
    ∴∠1=∠2,
    ∵∠3=∠4,
    ∴∠4=∠5,
    在△DEB中,∠4=∠5,
    ∴DE=DB.
    (2)如图,作DF⊥AB于F,

    连接OE,∵DB=DE,
    ∴EF=BE=3,
    在Rt△DEF中,EF=3,DE=BD=5,
    ∴DF=
    ∴sin∠DEF== ,
    ∵∠AOE,,
    ∴∠AOE=∠DEF,
    ∴在Rt△AOE中,sin∠AOE= ,
    ∵AE=6,
    ∴AO=.
    【点睛】
    本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.
    5、(1);(2);证明见解析;(3)
    【分析】
    (1)过点作于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,,,勾股定理即可求解;
    (2)延长至,使得,连接,过点作,交于点,根据平行四边形的性质可得,,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得;
    (3)过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值
    【详解】
    (1)过点作于点,如图

    将绕点顺时针旋转120°,得到,


    是等边三角形










    在中,,

    (2)如图,延长至,使得,连接,过点作,交于点,

    点是的中点


    四边形是平行四边形


    将绕点顺时针旋转120°,得到,


    是等边三角形


    ,,
    是等边三角形



    设,则,






    ,
    是等边三角形




    (3) 如图,过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,


    四点共圆

    由(2)可知,




    将绕点顺时针旋转120°,得到,


    是的中点,
    是的中位线





    是等腰直角三角形




    四边形是矩形


    在中,

    ,

    在中,

    在中



    【点睛】
    本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键.

    相关试卷

    2020-2021学年第24章 圆综合与测试当堂检测题:

    这是一份2020-2021学年第24章 圆综合与测试当堂检测题,共26页。

    数学九年级下册第24章 圆综合与测试课后作业题:

    这是一份数学九年级下册第24章 圆综合与测试课后作业题,共33页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    数学九年级下册第24章 圆综合与测试复习练习题:

    这是一份数学九年级下册第24章 圆综合与测试复习练习题,共26页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map