搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析沪科版九年级数学下册第24章圆单元测试练习题(精选含解析)

    2022年精品解析沪科版九年级数学下册第24章圆单元测试练习题(精选含解析)第1页
    2022年精品解析沪科版九年级数学下册第24章圆单元测试练习题(精选含解析)第2页
    2022年精品解析沪科版九年级数学下册第24章圆单元测试练习题(精选含解析)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试单元测试课时练习

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试单元测试课时练习,共30页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列汽车标志中既是轴对称图形又是中心对称图形的是(    A. B. C. D.2、如图图案中,不是中心对称图形的是(    A. B. C. D.3、下列图形中,既是轴对称图形又是中心对称图形的是(  )A. B. C.  D.4、平面直角坐标系中点关于原点对称的点的坐标是(    A. B. C. D.5、如图,在RtABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DEAC边于点F,则图中阴影部分的面积为(    A.3 B.1 C. D.6、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为(    A.1cm B.2cm C.3cm D.4cm7、点P(-3,1)关于原点对称的点的坐标是(    A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)8、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是(      ).A.90° B.100° C.120° D.150°9、的边经过圆心与圆相切于点,若,则的大小等于(    A. B. C. D.10、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使AGH三点刚好在金属框上,则该金属框的半径是(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、一个五边形共有__________条对角线.2、已知OI分别是△ABC的外心和内心,∠BIC=125°,则∠BOC的大小是 ___度.3、已知60°的圆心角所对的弧长是3.14厘米,则它所在圆的周长是______厘米.4、如图,将△ABC绕点A顺时针旋转得到△ADE,若∠DAE=110°,∠B=40°,则∠C的度数为________.5、如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于_____.三、解答题(5小题,每小题10分,共计50分)1、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.已知:⊙O.求作:⊙O的内接等腰直角三角形ABC. 作法:如图,①作直径AB②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;③作直线MO交⊙O于点CD④连接ACBC所以△ABC就是所求的等腰直角三角形.根据小明设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接MAMBMA=MBOA=OBMOAB的垂直平分线.AC=                 AB是直径,∴∠ACB=        (                        ) (填写推理依据) .∴△ABC是等腰直角三角形.2、如图1,在中,,将边绕着点A逆时针旋转,得到线段,连接边于点E,过点C于点F,延长于点G(1)求证:(2)如图2,当时,求证:(3)如图3,当时,请直接写出的值.3、如图,四边形的内接四边形,(1)求的度数.(2)求的度数.4、如图,AB是⊙O的直径,点DE在⊙O上,四边形BDEO是平行四边形,过点DAE的延长线于点C(1)求证:CD是⊙O的切线.(2)若,求阴影部分的面积.5、新定义:在平面直角坐标系xOy中,若几何图形G与⊙A有公共点,则称几何图形G为⊙A的关联图形,特别地,若⊙A的关联图形G为直线,则称该直线为⊙A的关联直线.如图1,∠M为⊙A的关联图形,直线l为⊙A的关联直线.(1)已知⊙O是以原点为圆心,2为半径的圆,下列图形:①直线y=2x+2;②直线y=﹣x+3;③双曲线y,是⊙O的关联图形的是    (请直接写出正确的序号).(2)如图2,⊙T的圆心为T(1,0),半径为1,直线ly=﹣x+bx轴交于点N,若直线l是⊙T的关联直线,求点N的横坐标的取值范围.(3)如图3,已知点B(0,2),C(2,0),D(0,﹣2),⊙I经过点C,⊙I的关联直线HB经过点B,与⊙I的一个交点为P;⊙I的关联直线HD经过点D,与⊙I的一个交点为Q;直线HBHD交于点H,若线段PQ在直线x=6上且恰为⊙I的直径,请直接写出点H横坐标h的取值范围. -参考答案-一、单选题1、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:C【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.3、B【详解】解:A.是轴对称图形,不是中心对称图形,故不符合题意;B.既是轴对称图形,又是中心对称图形,故符合题意;C.不是轴对称图形,是中心对称图形,故不符合题意;D.是轴对称图形,不是中心对称图形,故不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、B【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:平面直角坐标系中点关于原点对称的点的坐标是故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.5、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.【详解】解:如图,设相交于点旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.6、B【分析】连接OB,过点OOCAB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.【详解】解:连接OB,过点OOCAB于点D,交⊙O于点C,如图所示:AB=8cm,BD=AB=4(cm),由题意得:OB=OC==5cm,RtOBD中,OD=(cm),CD=OC-OD=5-3=2(cm),即水的最大深度为2cm,故选:B.【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.7、C【分析】据平面直角坐标系中任意一点Pxy),关于原点的对称点是(xy),然后直接作答即可.【详解】解:根据中心对称的性质,可知:点P3,1)关于原点O中心对称的点的坐标为(3,1).故选:C.【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.8、D【分析】绕点逆时针旋转,根据旋转的性质得,则为等边三角形,得到,在中,,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数.【详解】解:为等边三角形,可将绕点逆时针旋转如图,连接为等边三角形,中,为直角三角形,且故选:D.【点睛】本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.9、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.【详解】解:连接 与圆相切于点故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.10、A【分析】如图,记过AGH三点的圆为的垂直平分线的交点,的交点为 的交点为 延长的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.【详解】解:如图,记过AGH三点的圆为的垂直平分线的交点, 的交点为 的交点为 延长的垂直平分线,结合正方形的性质可得: 四边形为正方形,则 AB=2,CD=3,EF=5,结合正方形的性质可得: 解得: 故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过AGH三点的圆的圆心是解本题的关键.二、填空题1、5【分析】n边形的对角线有: 条,再把代入计算即可得.【详解】解:边形共有条对角线,五边形共有条对角线.故答案为:5【点睛】本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键.2、140【分析】的外接圆,根据三角形内心的性质可得:,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得.【详解】解:如图所示,作的外接圆,∵点I的内心,BICI分别平分∵点O的外心,故答案为:140.【点睛】题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键.3、18.84【分析】先根据弧长公式求得πr,然后再运用圆的周长公式解答即可.【详解】解:设圆弧所在圆的半径为厘米,解得则它所在圆的周长为(厘米),故答案为:【点睛】本题主要考查了弧长公式、圆的周长公式等知识点,牢记弧长公式是解答本题的关键.4、【分析】先根据旋转的性质求得,再运用三角形内角和定理求解即可.【详解】解:将△ABC绕点A顺时针旋转得到△ADE,∠DAE=110°故答案是:30°.【点睛】本题主要考查了旋转的性质、三角形内角和定理等知识点,灵活运用旋转的性质是解答本题的关键.5、2【分析】根据扇形的面积公式S,代入计算即可.【详解】解:∵“完美扇形”的周长等于6,∴半径r=2,弧长l为2,这个扇形的面积为:=2.答案为:2.【点睛】本题考查了扇形的面积公式,扇形面积公式与三角形面积公式十分类似,为了便于记忆,只要把扇形看成一个曲边三角形,把弧长l看成底,R看成底边上的高即可.三、解答题1、(1)见解析;(2)BC,90°,直径所对的圆周角是直角【分析】(1)过点O任作直线交圆于AB两点,再作AB的垂直平分线OM,直线MO交⊙O于点CD;连结ACBC即可;(2)根据线段垂直平分线的判定与性质得出AC=BC,根据圆周角定理得出∠ACB=90°即可.【详解】(1)①作直径AB②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;③作直线MO交⊙O于点CD④连接ACBC所以△ABC就是所求的等腰直角三角形.(2)证明:连接MAMBMA=MBOA=OBMOAB的垂直平分线.AC=BCAB是直径,∴∠ACB=90°(直径所对的圆周角是直角) .∴△ABC是等腰直角三角形.故答案为:BC,90°,直径所对的圆周角是直角.【点睛】本题考查尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质是解题关键.2、(1)见解析(2)见解析(3)【分析】(1)由旋转的性质得AB=AD,所以,再根据三角形内角和定理可证明即可得到结论;(2)连接,根据ASA证明是等边三角形,从而得出,再运用AAS证明,由勾股定理可得出,从而 可得结论;(3)证明平分,作于点,根据勾股定理得,代入求值即可.(1)边绕着点逆时针旋转得到线段 ,且∠AEB=∠CEF(2)连接中,ASA).,即中,AAS).∴在中,是等边三角形.(3)平分于点∴在中,∴在中,【点睛】本题属于几何变换综合题,考查了旋转变换,等腰直角三角形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形.3、(1)70°;(2)103°【分析】(1)根据等弧所对的圆周角相等可得,得出,在三角形中利用三角形内角和定理求解即可得;(2)由圆周角定理可得,结合(1)中结论及图形可得:,代入求解即可.【详解】解:(1)中,(2)由圆周角定理,得【点睛】题目主要考查圆周角定理,三角形内角和定理,熟练掌握运用圆周角定理是解题关键.4、(1)见详解;(2)【分析】(1)连接OD,由题意易得,则有△ODB是等边三角形,然后可得△AEO也为等边三角形,进而可得ODAC,最后问题可求证;(2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圆O的半径,进而可得扇形OED和△OED的面积,则有弓形ED的面积,最后问题可求解.【详解】(1)证明:连接OD,如图所示:∵四边形BDEO是平行四边形,∴△ODB是等边三角形,∴∠OBD=∠BOD=60°,∴∠AOE=∠OBD=60°,OE=OA∴△AEO也为等边三角形,∴∠EAO=∠DOB=60°,AEOD∴∠ODC+∠C=180°,CDAE∴∠C=90°,∴∠ODC=90°,OD是圆O的半径,CD是⊙O的切线.(2)解:由(1)得∠EAO=∠AOE=∠OBD=∠BOD=60°,EDAB∴∠EAO=∠CED=60°,∵∠AOE+∠EOD+∠BOD=180°,∴∠EOD=60°,∴△DEO为等边三角形,  ED=OE=AECDAE,∠CED=60°,∴∠CDE=30°,设△OED的高为h【点睛】本题主要考查扇形面积公式、切线的判定定理及解直角三角形,熟练掌握扇形面积公式、切线的判定定理及解直角三角形是解题的关键.5、(1)①③;(2)N的横坐标;(3)【分析】(1)在坐标系中作出圆及三个函数图象,即可得;(2)根据题意可得直线l的临界状态是与圆T相切的两条直线,当临界状态为时;当临界状态为时,根据勾股定理及直角三角形的性质即可得;(3)根据题意,只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,分三种情况讨论:①当点Q在点P的上方时,连接BPDQ,交于点H;②当点P在点Q的上方时,直线BPDQ,交于点H,求出直线HB、直线HD的解析式,然后利用两点之间的距离解方程求解;③当时,两条直线与圆无公共点;综合三种情况即可得.【详解】解:(1)在坐标系中作出圆及三个函数图象,可得①③函数解析式与圆有公共点,故答案为:①③;(2)如图所示:∵直线l的关联直线,∴直线l的临界状态是与相切的两条直线当临界状态为时,连接TM∵当时,时,为等腰直角三角形,∴点同理可得当临界状态为时,N的横坐标(3)①如图所示:只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,当点Q在点P的上方时,连接BPDQ,交于点H设点,直线HB的解析式为,直线HD的解析式为时,互为相反数,可得由图可得:,则结合解得:时,h的最大值为②如图所示:当点P在点Q的上方时,直线BPDQ,交于点H,当圆心Ix轴上时, 设点,直线HB的解析式为,直线HD的解析式为时,互为相反数,可得由图可得:,则结合解得:时,h的最小值为③当时,两条直线与圆无公共点,不符合题意,综上可得:【点睛】题目主要考查直线与圆的位置关系,等腰三角形的性质,勾股定理解三角形等,理解题意,作出相应图形是解题关键. 

    相关试卷

    初中数学第24章 圆综合与测试同步达标检测题:

    这是一份初中数学第24章 圆综合与测试同步达标检测题,共33页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试随堂练习题:

    这是一份沪科版九年级下册第24章 圆综合与测试随堂练习题,共29页。试卷主要包含了下列判断正确的个数有,如图,是的直径,等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试当堂检测题:

    这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共37页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map