终身会员
搜索
    上传资料 赚现金

    2022年沪科版九年级数学下册第24章圆综合练习试题(无超纲)

    立即下载
    加入资料篮
    2022年沪科版九年级数学下册第24章圆综合练习试题(无超纲)第1页
    2022年沪科版九年级数学下册第24章圆综合练习试题(无超纲)第2页
    2022年沪科版九年级数学下册第24章圆综合练习试题(无超纲)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第24章 圆综合与测试课时训练

    展开

    这是一份初中数学第24章 圆综合与测试课时训练,共30页。
    沪科版九年级数学下册第24章圆综合练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为( )

    A.4 B.6 C.8 D.10
    2、点P(3,﹣2)关于原点O的对称点的坐标是(  )
    A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)
    3、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )
    A. B.
    C. D.
    4、下列图形中,既是中心对称图形也是轴对称图形的是( )
    A. B. C. D.
    5、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.
    A.3π B.6π C.12π D.18π
    6、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是(  )

    A..等腰三角形 B.等边三角形
    C..直角三角形 D..等腰直角三角形
    7、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )

    A.45° B.60° C.90° D.120°
    8、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是(    )

    A.AM=BM B.CM=DM C. D.
    9、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是(  )

    A.80° B.70° C.60° D.50°
    10、如图,AB 为⊙O 的直径,弦 CD^AB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为( )

    A.3 B.2 C.1 D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、将点绕x轴上的点G顺时针旋转90°后得到点,当点恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为________.
    2、如图,AB是半圆O的直径,点D在半圆O上,,,C是弧BD上的一个动点,连接AC,过D点作于H.连接BH,则在点C移动的过程中,线段BH的最小值是______.

    3、已知O、I分别是△ABC的外心和内心,∠BIC=125°,则∠BOC的大小是 ___度.
    4、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.

    5、在平面直角坐标系中,A(-1,0),B(2,0),∠OCB=30°,D为线段BC的中点,线段AD交线段OC于点E,则△AOE面积的最大值为___________

    三、解答题(5小题,每小题10分,共计50分)
    1、(教材呈现)下图是华师版九年级下册数学教材第43页的部分内容.
    圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.
    由圆周角定理,可以得到以下推论:推论1 90°的圆周角所对的弦是直径.(如图)

    (推论证明)已知:△ABC的三个顶点都在⊙O上,且∠ACB=90°.
    求证:线段AB是⊙O的直径.
    请你结合图①写出推论1的证明过程.
    (深入探究)如图②,点A,B,C,D均在半径为1的⊙O上,若∠ACB=90°,∠ACD=60°.则线段AD的长为 .
    (拓展应用)如图③,已知△ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点E是BC的中点,连结DE. 若AB=,则DE的长为 .

    2、在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于r(r为常数),到点O的距离等于r的所有点组成图形G,ÐABC的平分线交图形G于点D,连接AD,CD.求证:AD=CD.

    3、综合与实践
    “利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具——三分角器.图1是它的示意图,其中与半圆的直径在同一直线上,且的长度与半圆的半径相等;与垂直于点,足够长.

    使用方法如图2所示,若要把三等分,只需适当放置三分角器,使经过的顶点,点落在边上,半圆与另一边恰好相切,切点为,则,就把三等分了.
    为了说明这一方法的正确性,需要对其进行证明.
    独立思考:(1)如下给出了不完整的“已知”和“求证”,请补充完整.
    已知:如图2,点,,,在同一直线上,,垂足为点,________,切半圆于.求证:________________.
    探究解决:(2)请完成证明过程.
    应用实践:(3)若半圆的直径为,,求的长度.
    4、如图,是⊙的直径,弦,垂足为E,弦与弦相交于点G,且,过点C作的垂线交的延长线于点H.

    (1)判断与⊙的位置关系并说明理由;
    (2)若,求弧的长.
    5、如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60°得到 ,连接 .
    (1)用等式表示 与CP的数量关系,并证明;
    (2)当∠BPC=120°时,
    ①直接写出 的度数为 ;
    ②若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明.


    -参考答案-
    一、单选题
    1、A
    【分析】
    根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.
    【详解】
    解:∵AB是⊙O的直径,
    ∴ ,
    ∵∠BAC=30°,BC=2,
    ∴.
    故选:A
    【点睛】
    本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.
    2、B
    【分析】
    根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.
    【详解】
    解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).
    故选:B.
    【点睛】
    本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.
    3、D
    【分析】
    根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    【详解】
    解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
    C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
    故选:D.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    4、A
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;
    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    C、是中心对称图形,不是轴对称图形,故此选项不符合题意;
    D、是中心对称图形,不是轴对称图形,故此选项不符合题意.
    故选:A.
    【点睛】
    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
    5、B
    【分析】
    利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
    【详解】
    解:它的侧面展开图的面积=×2×2×3=6(cm2).
    故选:B.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
    6、D
    【分析】
    根据旋转的性质推出相等的边CE=CF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.
    【详解】
    解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,
    ∴∠ECF=90°,CE=CF,
    ∴△CEF是等腰直角三角形,
    故选:D.
    【点睛】
    本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.
    7、B
    【分析】
    设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.
    【详解】
    解:设∠ADC=α,∠ABC=β;
    ∵四边形ABCO是菱形,
    ∴∠ABC=∠AOC;
    ∠ADC=β;
    四边形为圆的内接四边形,
    α+β=180°,
    ∴ ,
    解得:β=120°,α=60°,则∠ADC=60°,
    故选:B.
    【点睛】
    该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.
    8、B
    【分析】
    根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.
    【详解】
    解:∵弦AB⊥CD,CD过圆心O,
    ∴AM=BM,,,
    即选项A、C、D选项说法正确,不符合题意,
    当根据已知条件得CM和DM不一定相等,
    故选B.
    【点睛】
    本题考查了垂径定理,解题的关键是掌握垂径定理.
    9、A
    【分析】
    根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.
    【详解】
    证明:∵绕点C逆时针旋转得到,
    ∴,,
    ∴∠ADC=∠DAC,
    ∵点A,D,E在同一条直线上,
    ∴,
    ∴∠DAC=50°,
    ∴∠BAD=∠BAC-∠DAC=80°
    故选A.
    【点睛】
    本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.
    10、B
    【分析】
    连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.
    【详解】
    解:连接OC,如图

    ∵AB 为⊙O 的直径,CD^AB,垂足为点 E,CD=8,
    ∴,
    ∵,
    ∴,
    ∴;
    故选:B.
    【点睛】
    本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出.
    二、填空题
    1、或
    【分析】
    设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,由全等三角形求出点坐标,由点在2为半径的圆上,根据勾股定理即可求出点G的坐标.
    【详解】
    设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,
    如图所示:

    ∵,
    ∴,,
    ∵点A绕点G顺时针旋转90°后得到点,
    ∴,,
    ∴,
    ∵轴,轴,
    ∴,
    ∴,
    ∴,
    在与中,

    ∴,
    ∴,,
    ∴,
    ∴,
    在中,由勾股定理得:,
    解得:或,
    ∴或.
    故答案为:,.
    【点睛】
    本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键.
    2、##
    【分析】
    连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、、三点共线时,最小;求出,在中,,所以,即为所求.
    【详解】
    解:连接,取的中点,连接,


    点在以为圆心,为半径的圆上,
    当、、三点共线时,最小,
    是直径,

    ,,
    ,,
    在中,,

    故答案为:.
    【点睛】
    本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹.
    3、140
    【分析】
    作的外接圆,根据三角形内心的性质可得:,,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得.
    【详解】
    解:如图所示,作的外接圆,

    ∵点I是的内心,
    ∴BI,CI分别平分和,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵点O是的外心,
    ∴,
    故答案为:140.
    【点睛】
    题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键.
    4、65
    【分析】
    连接OA,OC,OB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分,EO平分,再由各角之间的数量关系可得,,根据等量代换可得,代入求解即可.
    【详解】
    解:如图所示:连接OA,OC,OB,

    ∵PA、PB、DE与圆相切于点A、B、E,
    ∴,,,
    ∵,
    ∴,
    ∵,
    ∴DO平分,EO平分,
    ∴,,
    ∴,,
    ∴,
    故答案为:65.
    【点睛】
    题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.
    5、
    【分析】
    过点作轴,交于点,根据中位线定理可得,设点到轴的距离为G,则△AOE的边上的高,作的外接圆,则当点位于图中处时,最大,根据三角形面积公式计算即可.
    【详解】
    解:过点作轴,交于点,

    ∵A(-1,0),B(2,0),
    ∴,,
    ∵D为线段BC的中点,轴,
    ∴,
    ∴,
    设点到轴的距离为,
    则△AOE的边上的高,
    作的外接圆,
    则当点位于图中处时,最大,
    因为,
    ∴,
    ∴为等边三角形,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    故答案为:.
    【点睛】
    本题考查了三角形中位线定理,圆周角定理,圆周角和圆心角的关系,等边三角形的判定与性质,解直角三角形等知识点,根据题意得出点的位置是解本题的关键.
    三、解答题
    1、【推论证明】见解析;【深入探究】;【拓展应用】.
    【分析】
    推论证明:根据圆周角定理求出,即可证明出线段AB是⊙O的直径;
    深入探究:连接AB,首先根据∠ACB=90°得出AB是⊙O的直径,然后求出,然后根据同弧所对的圆周角相等得到,然后根据30°角直角三角形的性质求出BD的长度,最后根据勾股定理即可求出AD的长度;
    拓展应用:连接AE,作CF⊥DE交DE于点F,首先根据等边三角形三线合一的性质求出,然后证明出A,E,C,D四点共圆,然后根据同弧或等弧所对的圆周角相等求出,,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.
    【详解】
    解:推论证明:∵
    ∴,
    ∴A,B,O三点共线,
    又∵点O是圆心,
    ∴AB是⊙O的直径;
    深入探究:如图所示,连接AB,

    ∵∠ACB=90°
    ∴AB是⊙O的直径

    ∵∠ACD=60°



    ∴在中,
    ∴;
    拓展应用:如图所示,连接AE,作CF⊥DE交DE于点F,

    ∵△ABC是等边三角形,点E是BC的中点
    ∴,
    又∵以AC为底边在三角形ABC外作等腰直角三角形ACD
    ∴,
    ∴点A,E,C,D四点都在以AC为直径的圆上,


    ∵CF⊥DE
    ∴是等腰直角三角形
    ∴,


    ∴,解得:



    ∴在中,

    ∴.
    【点睛】
    此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.
    2、见解析
    【分析】
    由题意画图,再根据圆周角定理的推论即可得证结论.
    【详解】
    证明:根据题意作图如下:

    ∵BD是圆周角ABC的角平分线,
    ∴∠ABD=∠CBD,
    ∴,
    ∴AD=CD.
    【点睛】
    本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键.
    3、(1),,将三等分;(2)见解析;(3)
    【分析】
    (1)根据题意即可得;
    (2)先证明与全等,然后根据全等的性质可得,再由圆的切线的性质可得,可得三个角相等,即可证明结论;
    (3)连,延长与相交于点,由(2)结论可得,再由切线的性质,,然后利用勾股定理及线段间的数量关系可得,最后利用相似三角形的判定和性质求解即可得.
    【详解】
    解:(1),,将三等分,
    故答案为:;,将三等分,
    (2)证明:在与中,




    是的切线.
    、都是的切线,


    ,将三等分.
    (3)如图,连,延长与相交于点,

    由(2),知.
    是的切线,

    ,.
    ∵半径,
    ∴由勾股定理得,在中,
    ,,

    ∵,


    ,即,

    【点睛】
    题目主要考查全等三角形的判定和性质,相似三角形的判定和性质,圆的切线的性质,勾股定理等,理解题意,结合图形综合运用这些知识点是解题关键.
    4、
    (1)相切,见解析
    (2)
    【分析】
    (1)连接OC、OD、AC,OC交AF于点M,根据AG=CG,CD⊥AB,可得,从而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求证;
    (2)先证明四边形CMFH为矩形,可得OC⊥AF,CM=HF=2,从而得到AM=FM,进而得到OM=BF=2,可得到CM=OM,进而得到 OC=4,AM垂直平分OC,可证得△AOC为等边三角形,即可求解.
    (1)
    解: CH与⊙O相切.
    理由如下:如图,连接OC、OD、AC,OC交AF于点M,

    ∵AG=CG,
    ∴∠ACG=∠CAG,
    ∴,
    ∵CD⊥AB,
    ∴,
    ∴,
    ∴OC⊥AF,
    ∵AB为直径,
    ∴∠AFB=90°,
    ∵BH⊥CH,
    ∴CH∥AF,
    ∴OC⊥CH,
    ∵OC为半径,
    ∴CH为⊙O的切线;
    (2)
    解:由(1)得:BH⊥CH,OC⊥CH,
    ∴OC∥BH,
    ∵CH∥AF,
    ∴四边形CMFH为平行四边形,
    ∵OC⊥CH,
    ∴∠OCH=90°,
    ∴四边形CMFH为矩形,
    ∴OC⊥AF,CM=HF=2,
    ∴AM=FM,
    ∵点O为AB的中点,
    ∴OM=BF=2,
    ∴CM=OM,
    ∴OC=4,AM垂直平分OC,
    ∴AC=AO,
    而AO=OC,
    ∴AC=OC=OA,,
    ∴△AOC为等边三角形,
    ∴∠AOC=60°,
    ∵,
    ∴∠AOD=∠AOC=60°,
    ∴∠COD=120°,
    ∴弧CD的长度为.
    【点睛】
    本题主要考查了圆的基本性质,垂径定理,切线的判定,等边三角形的判定和性质,熟练掌握相关知识点是解题的关键.
    5、(1),理由见解析;(2)①60°;②PM=,见解析
    【分析】
    (1)根据等边三角形的性质,可得AB=AC,∠BAC=60°,再由由旋转可知:从而得到,可证得,即可求解 ;
    (2)①由∠BPC=120°,可得∠PBC+∠PCB=60°.根据等边三角形的性质,可得∠BAC=60°,从而得到∠ABC+∠ACB=120°,进而得到∠ABP+∠ACP=60°.再由,可得 ,即可求解;
    ②延长PM到N,使得NM=PM,连接BN.可先证得△PCM≌△NBM.从而得到CP=BN,∠PCM=∠NBM.进而得到 .根据①可得,可证得,从而得到 .再由 为等边三角形,可得 .从而得到 ,即可求解.
    【详解】
    解:(1) .理由如下:
    在等边三角形ABC中,AB=AC,∠BAC=60°,
    由旋转可知:


    在和△ACP中

    ∴ .
    ∴ .
    (2)①∵∠BPC=120°,
    ∴∠PBC+∠PCB=60°.
    ∵在等边三角形ABC中,∠BAC=60°,
    ∴∠ABC+∠ACB=120°,
    ∴∠ABP+∠ACP=60°.
    ∵ .
    ∴ ,
    ∴∠ABP+∠ABP'=60°.
    即 ;
    ②PM= .理由如下:
    如图,延长PM到N,使得NM=PM,连接BN.

    ∵M为BC的中点,
    ∴BM=CM.
    在△PCM和△NBM中

    ∴△PCM≌△NBM(SAS).
    ∴CP=BN,∠PCM=∠NBM.
    ∴ .
    ∵∠BPC=120°,
    ∴∠PBC+∠PCB=60°.
    ∴∠PBC+∠NBM=60°.
    即∠NBP=60°.
    ∵∠ABC+∠ACB=120°,
    ∴∠ABP+∠ACP=60°.
    ∴∠ABP+∠ABP'=60°.
    即 .
    ∴ .
    在△PNB和 中

    ∴ (SAS).
    ∴ .

    ∴ 为等边三角形,
    ∴ .
    ∴ ,
    ∴PM= .
    【点睛】
    本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键.

    相关试卷

    数学九年级下册第24章 圆综合与测试一课一练:

    这是一份数学九年级下册第24章 圆综合与测试一课一练,共35页。

    沪科版九年级下册第24章 圆综合与测试课时练习:

    这是一份沪科版九年级下册第24章 圆综合与测试课时练习,共39页。试卷主要包含了下列叙述正确的有个.等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试练习题,共31页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map