开学活动
搜索
    上传资料 赚现金

    2022年沪科版九年级数学下册第24章圆单元测试试卷(含答案详解)

    2022年沪科版九年级数学下册第24章圆单元测试试卷(含答案详解)第1页
    2022年沪科版九年级数学下册第24章圆单元测试试卷(含答案详解)第2页
    2022年沪科版九年级数学下册第24章圆单元测试试卷(含答案详解)第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试单元测试课后测评

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试单元测试课后测评,共34页。试卷主要包含了等边三角形等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为( )
    A.64°B.52°C.42°D.36°
    2、下面的图形中既是轴对称图形又是中心对称图形的是( )
    A.B.C.D.
    3、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
    A.OP>4B.0≤OP2D.0≤OP4,
    故选:A.
    【点睛】
    此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
    4、B
    【分析】
    根据,,点D、E分别是AB、AC的中点.得出∠DAE=90°,AD=AE=,可证∠DAB=∠EAC,再证△DAB≌△EAC(SAS),可判断①△AEC≌△ADB正确;作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,根据△AEC≌△ADB,得出∠DBA=∠ECA,可证∠P=∠BAC=90°,CP为⊙A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判断②CP存在最大值为正确;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判断③BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,可求∠ACE=30°,根据圆周角定理得出∠AOP=2∠ACE=60°,当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,可得∠ABD=30°根据圆周角定理得出∠AOP′=2∠ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断④点P运动的路径长为正确即可.
    【详解】
    解:∵,,点D、E分别是AB、AC的中点.
    ∴∠DAE=90°,AD=AE=,
    ∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,
    ∴∠DAB=∠EAC,
    在△DAB和△EAC中,

    ∴△DAB≌△EAC(SAS),
    故①△AEC≌△ADB正确;
    作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,
    ∵△AEC≌△ADB,
    ∴∠DBA=∠ECA,
    ∴∠PBA+∠P=∠ECP+∠BAC,
    ∴∠P=∠BAC=90°,
    ∵CP为⊙A的切线,
    ∴AE⊥CP,
    ∴∠DPE=∠PEA=∠DAE=90°,
    ∴四边形DAEP为矩形,
    ∵AD=AE,
    ∴四边形DAEP为正方形,
    ∴PE=AE=3,
    在Rt△AEC中,CE=,
    ∴CP最大=PE+EC=3+,
    故②CP存在最大值为正确;
    ∵△AEC≌△ADB,
    ∴BD=CE=,
    在Rt△BPC中,BP最小=,
    BP最短=BD-PD=-3,
    故③BP存在最小值为不正确;
    取BC中点为O,连结AO,OP,
    ∵AB=AC=6,∠BAC=90°,
    ∴BP=CO=AO=,
    当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,
    ∴∠ACE=30°,
    ∴∠AOP=2∠ACE=60°,
    当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,
    ∴∠ABD=30°,
    ∴∠AOP′=2∠ABD=60°,
    ∴点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,
    ∵∠POP=∠POA+∠AOP′=60°+60°=120°,
    ∴L.
    故④点P运动的路径长为正确;
    正确的是①②④.
    故选B.
    【点睛】
    本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键.
    5、B
    【分析】
    由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.
    【详解】
    解:根据题意,如图:
    ∵AB是的直径,OD是半径,,
    ∴AE=CE,
    ∴阴影CED的面积等于AED的面积,
    ∴,
    ∵,,
    ∴,
    ∴;
    故选:B
    【点睛】
    本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.
    6、A
    【分析】
    根据轴对称图形与中心对称图形的概念进行判断.
    【详解】
    解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;
    等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
    共2个既是轴对称图形又是中心对称图形.
    故选:A.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
    7、B
    【分析】
    连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.
    【详解】
    解:连接 为的直径,



    为的切线,


    故选B
    【点睛】
    本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.
    8、C
    【详解】
    解:根据图形可知,这种图形的运动是旋转而得到的,
    故选:C.
    【点睛】
    本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.
    9、B
    【分析】
    根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
    【详解】
    解:连接,
    ,点O为AB中点.
    CO为⊙C的半径,
    是的切线,
    ⊙C 与AB的位置关系是相切
    故选B
    【点睛】
    本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
    10、D
    【分析】
    连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.
    【详解】
    解:连接CD,如图所示:
    ∵点D是AB的中点,,,
    ∴,
    ∵,
    ∴,
    在Rt△ACB中,由勾股定理可得;
    故选D.
    【点睛】
    本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.
    二、填空题
    1、##
    【分析】
    连接,延长交于点,连接,先根据圆周角定理和圆的性质可得,再根据特殊角的三角函数值可得,从而可得,作,交于点,从而可得,然后在中,利用直角三角形的性质和勾股定理可得,设,从而可得,利用直角三角形的面积公式可求出的值,由此即可得.
    【详解】
    解:如图,连接,延长交于点,连接,
    都是的直径,



    在中,,

    平分,且,




    如图,作,交于点,

    在中,,

    设,则,


    解得或(不符题意,舍去),
    则,
    故答案为:.
    【点睛】
    本题考查了特殊角的三角函数值、圆周角定理、含角的直角三角形的性质等知识点,通过作辅助线,构造直角三角形和等腰三角形是解题关键.
    2、相切或相交
    【详解】
    首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离,从而得出答案.
    【分析】
    解:∵x2﹣5x+6=0,
    (x﹣2)(x﹣3)=0,
    解得:x1=2,x2=3,
    ∵圆的半径是方程x2﹣5x+6=0的根,即圆的半径为2或3,
    ∴当半径为2时,直线l与圆O的的位置关系是相切,
    当半径为3时,直线l与圆O的的位置关系是相交,
    综上所述,直线l与圆O的的位置关系是相切或相交.
    故答案为:相切或相交.
    【点睛】
    本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定.
    3、
    【分析】
    先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.
    【详解】
    解:∵BC是圆O的切线,
    ∴∠OBC=90°,
    ∵四边形ABCO是平行四边形,
    ∴AO=BC,
    又∵AO=BO,
    ∴BO=BC,
    ∴∠BOC=∠BCO=45°,
    ∵OD=OB,
    ∴∠ODB=∠OBD,
    ∵∠ODB+∠OBD=∠BOC,
    ∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,
    故答案为:22.5°.
    【点睛】
    本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.
    4、45
    【分析】
    连接OC,OD,根据同底等高可知S△ACD=S△OCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.
    【详解】
    解:连接OC,OD,
    ∵直径AB=30,
    ∴OC=OD=,
    ∴CD∥AB,
    ∴S△ACD=S△OCD,
    ∵长为6π,
    ∴阴影部分的面积为S阴影=S扇形OCD=,
    故答案为:45π.
    【点睛】
    本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.
    5、2 2
    【分析】
    关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出a、b即可求得答案.
    【详解】
    解:∵点和点关于原点对称,
    ∴,
    ∴,
    故答案为:2;2.
    【点睛】
    本题主要考查了关于原点对称点的坐标特征,解二元一次方程组,熟记关于原点对称点的坐标特征并运用解题是关键.
    三、解答题
    1、
    (1)见解析;
    (2)
    (3)
    【分析】
    (1)根据题意补全图形即可;
    (2)根据旋转的性质可得,,进而证明,可得,根据角度的转换可得,进而根据三角形的外角性质即可证明;
    (3)过点作,证明,进而根据勾股定理以及线段的转换即可得到
    (1)
    如图,
    (2)
    将线段AE绕点A逆时针旋转90°,得到线段AF,
    ,
    ,


    (3)
    证明如下,如图,过点作,
    又,



    【点睛】
    本题考查了旋转的性质,三角形全等的性质与判定,勾股定理,等腰三角形的性质,掌握旋转的性质是解题的关键.
    2、(1)①B和C;②或;(2)或
    【分析】
    (1)①分别找出点A,B,C到线段ON的最小值和最大值,是否满足“二分点”定义即可;
    ②对a的取值分情况讨论:、、和,根据“二分点”的定义可求解;
    (2)设线段AN上存在的“二分点”为,对的取值分情况讨论、,、,和,根据“二分点”的定义可求解.
    【详解】
    (1)①
    ∵点A在ON上,故最小值为0,不符合题意,
    点B到ON的最小值为,最大值为,
    ∴点B是线段ON的“二分点”,
    点C到ON的最小值为1,最大值为,
    ∴点C是线段ON的“二分点”,
    故答案为:B和C;
    ②若时,如图所示:
    点C到OD的最小值为,最大值为,
    ∵点C为线段OD的“二分点”,
    ∴,
    解得:;
    若,如图所示:
    点C到OD的最小值为1,最大值为,满足题意;
    若时,如图所示:
    点C到OD的最小值为1,最大值为,
    ∵点C为线段OD的“二分点”,
    ∴,
    解得:(舍);
    若时,如图所示:
    点C到OD的最小值为,最大值为,
    ∵点C为线段OD的“二分点”,
    ∴,
    解得:或(舍),
    综上所得:a的取值范围为或;
    (2)
    如图所示,设线段AN上存在的“二分点”为,
    当时,最小值为:,最大值为:,
    ∴,即,
    ∵,

    ∴;
    当,时,最小值为:,最大值为:,
    ∴∴,即,
    ∵,
    ∴,
    ∵,
    ∴不存在;
    当,时,最小值为:,最大值为:,
    ∴,即,
    ∴,
    ∵,
    ∴不存在;
    当时,最小值为:,最大值为:,
    ∴,即,
    ∴,
    ∵,
    ∴,
    综上所述,r的取值范围为或.
    【点睛】
    本题考查坐标上的两点距离,解一元二次方程解不等式以及点到圆的距离求最值,根据题目所给条件,掌握“二分点”的定义是解题的关键.
    3、
    (1)135°
    (2)∠MOP-∠NOQ=30°,理由见解析
    (3)s或s.
    【分析】
    (1)先根据OP平分得到∠PON,然后求出∠BOP即可;
    (2)先根据题意可得∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,然后作差即可;
    (3)先求出旋转前OC、OD的夹角,然后再求出OC与OD第一次和第二次相遇所需要的时间,再设在OC与OD第二次相遇前,当时,需要旋转时间为t,再分OE在OC的左侧和OE在OC的右侧两种情况解答即可.
    (1)
    解:∵OP平分∠MON
    ∴∠PON=∠MON=45°
    ∴三角板OPQ旋转的角:∠BOP=∠PON+∠NOB=135°.
    故答案是135°
    (2)
    解:∠MOP-∠NOQ=30°,理由如下:
    ∵∠MON=90°,∠POQ=60°
    ∴∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,
    ∴∠MOP-∠NOQ=90°-∠POQ -(60°-∠POQ)=30°.
    (3)
    解:∵射线OC平分,射线OD平分
    ∴∠NOC=45°,∠POD=30°
    ∴选择前OC与OD的夹角为∠COD=∠NOC+∠NOP+∠POD=165°
    ∴OC与OD第一次相遇的时间为165°÷(2°+3°)=33秒,此时OB旋转的角度为33×5°=165°
    ∴此时OC与OE的夹角165-(180-45-2×33)=96°
    OC与OD第二次相遇需要时间360°÷(3°+2°)=72秒
    设在OC与OD第二次相遇前,当时,需要旋转时间为t
    ①当OE在OC的左侧时,有(5°-2°)t=96°-13°,解得:t=s
    ②当OE在OC的右侧时,有(5°-2°)t=96°+13°,解得:t=s
    然后,①②都是每隔360÷(5°-2°)=120秒,出现一次这种现象
    ∵C、D第二次相遇需要时间72秒
    ∴在OC与OD第二次相遇前,当时,、旋转时间t的值为s或s.
    【点睛】
    本题主要考查了角平分线的定义、平角的定义、一元一次方程的应用等知识点,灵活运用相关知识成为解答本题的关键.
    4、成立,证明见解析
    【分析】
    根据阅读材料将△ADF旋转120°再证全等即可求得EF= BE+DF .
    【详解】
    解:成立.
    证明:将绕点顺时针旋转,得到,
    ,,,,,
    ,、、三点共线,

    ,,,


    【点睛】
    本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键.
    5、(1)(4,﹣1);(2)见解析;(3)见解析.
    【分析】
    (1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;
    (2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;
    (3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.
    【详解】
    (1)点B关于原点对称的点B′的坐标为(4,﹣1),
    故答案为:(4,﹣1);
    (2)如图所示,△A1B1C1即为所求.
    (3)如图所示,△A2B2C2即为所求.
    【点睛】
    本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.
    从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:
    如下图1,在正方形中,以为顶点的,、与、边分别交于、两点.易证得.
    大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、、三点共线,,进而可证明,故.

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试同步练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步练习题,共33页。试卷主要包含了下列判断正确的个数有,下列说法正确的个数有,下列语句判断正确的是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试同步训练题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步训练题,共34页。

    数学九年级下册第24章 圆综合与测试课堂检测:

    这是一份数学九年级下册第24章 圆综合与测试课堂检测,共33页。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map