![2021-2022学年最新沪科版九年级数学下册第24章圆综合训练试题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12683308/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新沪科版九年级数学下册第24章圆综合训练试题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12683308/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新沪科版九年级数学下册第24章圆综合训练试题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12683308/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学沪科版第24章 圆综合与测试课后练习题
展开
这是一份数学沪科版第24章 圆综合与测试课后练习题,共36页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,,,,都是上的点,,垂足为,若,则的度数为( )
A. B. C. D.
2、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
3、如图,AB为的直径,,,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )
A. B. C.3 D.
4、如图,AB,BC,CD分别与⊙O相切于E、F、G三点,且ABCD,BO=3,CO=4,则OF的长为( )
A.5 B. C. D.
5、在半径为6cm的圆中,的圆心角所对弧的弧长是( )
A.cm B.cm C.cm D.cm
6、下列四个图案中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
7、下列说法正确的个数有( )
①方程的两个实数根的和等于1;
②半圆是弧;
③正八边形是中心对称图形;
④“抛掷3枚质地均匀的硬币全部正面朝上”是随机事件;
⑤如果反比例函数的图象经过点,则这个函数图象位于第二、四象限.
A.2个 B.3个 C.4个 D.5个
8、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P. A,P分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是( )
A.20 m B.20m
C.(20 - 20)m D.(40 - 20)m
9、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )
A.50° B.70° C.110° D.120°
10、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )
A.19° B.38° C.52° D.76°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,一次函数的图像与x轴,y轴分别相交于点A,点B,将它绕点O逆时针旋转90°后,与x轴相交于点C,我们将图像过点A,B,C的二次函数叫做与这个一次函数关联的二次函数.如果一次函数的关联二次函数是(),那么这个一次函数的解析式为______.
2、如图,在等腰直角中,已知,将绕点逆时针旋转60°,得到,连接,若,则________.
3、如图,将△ABC绕点A顺时针旋转得到△ADE,若∠DAE=110°,∠B=40°,则∠C的度数为________.
4、在平面直角坐标系中,点关于原点对称的点的坐标是______.
5、如图,在⊙O中,A,B,C是⊙O上三点,如果∠AOB=70º,那么∠C的度数为_______.
三、解答题(5小题,每小题10分,共计50分)
1、对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若P,Q两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”.
已知点N(3,0),A(1,0),,.
(1)①在点A,B,C中,线段ON的“二分点”是______;
②点D(a,0),若点C为线段OD的“二分点”,求a的取值范围;
(2)以点O为圆心,r为半径画圆,若线段AN上存在的“二分点”,直接写出r的取值范围.
2、将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,∠MPN的两边分别与正方形的边BC、DC或其所在直线相交于点E、F,连接EF.
(1)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC相交时,如图1所示,请直接写出线段BE、DF、EF满足的数量关系;
(2)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC的延长线相交时,如图2所示,请直接写出线段BE、DF、EF满足的数量关系;
(3)若正方形的边长为4,在三角板旋转过程中,当∠MPN的一边恰好经过BC边的中点时,试求线段EF的长.
3、已知,P是直线AB上一动点(不与A,B重合),以P为直角顶点作等腰直角三角形PBD,点E是直线AD与△PBD的外接圆除点D以外的另一个交点,直线BE与直线PD相交于点F.
(1)如图,当点P在线段AB上运动时,若∠DBE=30°,PB=2,求DE的长;
(2)当点P在射线AB上运动时,试探求线段AB,PB,PF之间的数量关系,并给出证明.
4、如图AB是⊙O的直径,弦CD⊥AB于点E,作∠FAC=∠BAC,过点C作CF⊥AF于点F.
(1)求证:CF是⊙O的切线;
(2)若sin∠CAB=,求=_______.(直接写出答案)
5、如图,已知是的直径,是的切线,C为切点,交于点E,,,平分.
(1)求证:;
(2)求、的长.
-参考答案-
一、单选题
1、B
【分析】
连接OC.根据确定,,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出.
【详解】
解:如下图所示,连接OC.
∵,
∴,.
∴.
∵.
∴.
∴
∵和分别是所对的圆周角和圆心角,
∴.
故选:B.
【点睛】
本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.
2、D
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3、D
【分析】
连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得
【详解】
如图,连接,
,
是直角三角形,且
是等边三角形
是直径,
故选D
【点睛】
本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.
4、D
【分析】
连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.
【详解】
解:连接OF,OE,OG,
∵AB、BC、CD分别与相切,
∴,,,且,
∴OB平分,OC平分,
∴,,
∵,
∴,
∴,
∴,
,
∴SΔOBC=12OB·OC=12BC·OF,
∴,
故选:D.
【点睛】
题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
5、C
【分析】
直接根据题意及弧长公式可直接进行求解.
【详解】
解:由题意得:的圆心角所对弧的弧长是;
故选C.
【点睛】
本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.
6、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;
B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
C、是轴对称图形,是中心对称图形,故此选项不符合题意;
D、不是轴对称图形,是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
7、B
【分析】
根据所学知识对五个命题进行判断即可.
【详解】
1、Δ=12-4×1=-3
相关试卷
这是一份2020-2021学年第24章 圆综合与测试当堂检测题,共26页。
这是一份沪科版九年级下册第24章 圆综合与测试综合训练题,共36页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第24章 圆综合与测试一课一练,共29页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。