年终活动
搜索
    上传资料 赚现金

    2021-2022学年最新沪科版九年级数学下册第24章圆章节测评练习题(无超纲)

    2021-2022学年最新沪科版九年级数学下册第24章圆章节测评练习题(无超纲)第1页
    2021-2022学年最新沪科版九年级数学下册第24章圆章节测评练习题(无超纲)第2页
    2021-2022学年最新沪科版九年级数学下册第24章圆章节测评练习题(无超纲)第3页
    还剩30页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试课后测评

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试课后测评,共33页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆章节测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、点P(-3,1)关于原点对称的点的坐标是( )
    A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)
    2、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )

    A.50° B.70° C.110° D.120°
    3、下列图形中,是中心对称图形,但不是轴对称图形的是( )
    A. B. C. D.
    4、下列判断正确的个数有( )
    ①直径是圆中最大的弦;
    ②长度相等的两条弧一定是等弧;
    ③半径相等的两个圆是等圆;
    ④弧分优弧和劣弧;
    ⑤同一条弦所对的两条弧一定是等弧.
    A.1个 B.2个 C.3个 D.4个
    5、如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=(  )

    A.10 B.2 C.2 D.4
    6、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )
    A.相离 B.相切 C.相交 D.相交或相切
    7、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )

    A.平移 B.翻折 C.旋转 D.以上三种都不对
    8、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )

    A.相交 B.相切
    C.相离 D.不确定
    9、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
    A.OP>4 B.0≤OP2 D.0≤OP4,
    故选:A.
    【点睛】
    此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
    10、C
    【分析】
    如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.
    【详解】
    解:如图所示,连接CP,
    ∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,
    ∴∠CPO=90°,∠COP=45°,
    ∴∠PCO=∠COP=45°,
    ∴CP=OP=4,
    ∴,
    故选C.

    【点睛】
    本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.
    二、填空题
    1、
    【分析】
    连接OC交AB于点D,再连接OA.根据轴对称的性质确定,OD=CD;再根据垂径定理确定AD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度.
    【详解】
    解:如下图所示,连接OC交AB于点D,再连接OA.

    ∵折叠后弧的中点与圆心重叠,
    ∴,OD=CD.
    ∴AD=BD.
    ∵圆形纸片的半径为10cm,
    ∴OA=OC=10cm.
    ∴OD=5cm.
    ∴cm.
    ∴BD=cm.
    ∴cm.
    故答案为:.
    【点睛】
    本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键.
    2、②③④
    【分析】
    根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PC≥AC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.
    【详解】
    ∵GH是⊙O的切线,M为切点,且CM是⊙O的直径,
    ∴∠CMH=90°,
    ∵四边形ABCD是正方形,
    ∴∠CMH=∠CDH=90°,
    ∵CM=CD,CH=CH,
    ∴△CMH≌△CDH,
    ∴HD=HM,∠HCM=∠HCD,
    同理可证,∴GM=GB,∠GCB=∠GCM,
    ∴GB+DH=GH,无法确定HD=2BG,
    故①错误;
    ∵∠HCM+∠HCD+∠GCB+∠GCM=90°,
    ∴2∠HCM+2∠GCM=90°,
    ∴∠HCM+∠GCM=45°,
    即∠GCH=45°,
    故②正确;

    ∵△CMH≌△CDH,BD是正方形的对角线,
    ∴∠GHF=∠DHF,∠GCH=∠HDF=45°,
    ∴∠GHF+∠GEF=∠DHF +∠GCH+∠EFC
    =∠DHF +∠HDF+∠HFD
    =180°,
    根据对角互补的四边形内接于圆,
    ∴H,F,E,G四点在同一个圆上,
    故③正确;
    ∵正方形ABCD的边长为1,

    =1
    =,∠GAH=90°,AC=
    取GH的中点P,连接PA,
    ∴GH=2PA,
    ∴=,
    ∴当PA取最小值时,有最大值,
    连接PC,AC,
    则PA+PC≥AC,
    ∴PA≥AC- PC,
    ∴当PC最大时,PA最小,
    ∵直径是圆中最大的弦,
    ∴PC=1时,PA最小,
    ∴当A,P,C三点共线时,且PC最大时,PA最小,
    ∴PA=-1,
    ∴最大值为:1-(-1)=2-,
    ∴四边形CGAH面积的最大值为2,
    ∴④正确;
    故答案为: ②③④.
    【点睛】
    本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.
    3、
    【分析】
    根据圆锥的展开图为扇形,结合弧长公式、圆周长的求解公式、面积的求解公式,圆锥侧面积的求解公式可得出答案.
    【详解】
    解:圆锥的侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆周长,
    故可得,这个扇形的半径为,扇形的弧长为,
    圆锥的侧面积为;
    圆锥的全面积为圆锥的底面积侧面积:.
    故答案为:.
    【点睛】
    本题考查了圆锥的计算,解题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.
    4、2
    【分析】
    取AC中点O,由勾股定理的逆定理可知∠ADC=90°,则点D在以O为圆心,以AC为直径的圆上,作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,由此求解即可.
    【详解】
    解:如图所示,取AC中点O,
    ∵,即,
    ∴∠ADC=90°,
    ∴点D在以O为圆心,以AC为直径的圆上,
    作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,
    ∵,,∠ACB=90°,
    ∴,
    ∴,
    ∴,
    ∴,
    故答案为:2.

    【点睛】
    本题主要考查了一点到圆上一点的最短距离,勾股定理的逆定理,勾股定理,解题的关键在于确定点D的运动轨迹.
    5、3
    【分析】
    由切线长定理和,可得为等边三角形,则.
    【详解】
    解:连接,如下图:

    ,分别为的切线,

    为等腰三角形,


    为等边三角形,



    故答案为:3.
    【点睛】
    本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.
    三、解答题
    1、2+
    【分析】
    连接AC,CM,AB,过点C作CH⊥OA于H,设OC=a.利用勾股定理构建方程解决问题即可.
    【详解】
    解:连接AC,CM,AB,过点C作CH⊥OA于H,设OC=a.

    ∵∠AOB=90°,
    ∴AB是直径,
    ∵A(-4,0),B(0,2),
    ∴,
    ∵∠AMC=2∠AOC=120°,

    在Rt△COH中,,

    在Rt△ACH中,AC2=AH2+CH2,
    ∴,
    ∴a=2+ 或2-(因为OC>OB,所以2-舍弃),
    ∴OC=2+,
    故答案为:2+.
    【点睛】
    本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.
    2、(1)S△ABC=20;(2)见解析;(3)见解析.
    【分析】
    (1)设⊙O的半径为r,由切线长定理得,AE=AD=4,BF=BD=5,CE=CF=r,由勾股定理得,(r+4)2+(r+5)2=92,进而求得结果;
    (2)根据切线长定理可证明甲和乙两个三角形全等,丙丁两个三角形全等,故将甲乙图形放在OE为边的上方,将丙丁以OP为边放在右侧,围成矩形的边长是4和5;
    (3)可先计算∠AFB=135°,根据“定弦对定角”作F点的轨迹,根据切线性质,过点F作AB的垂线,再根据直径所对的圆周角是90°,确定点C.
    【详解】
    解:(1)如图1,

    设⊙O的半径为r,
    连接OE,OF,
    ∵⊙O内切于△ABC,
    ∴OE⊥AC,OF⊥BC,AE=AD=4,BF=BD=5,
    ∴∠OEC=∠OFC=∠C=90°,
    ∴四边形ECFO是矩形,
    ∴CF=OE=r,CE=OF=r,
    ∴AC=4+r,BC=5+r,
    在Rt△ABC中,由勾股定理得,
    (r+4)2+(r+5)2=92,
    ∴r2+9r=20,
    ∴S△ABC=



    =20;
    (2)
    如图2,

    (3)设△ABC的内切圆记作⊙F,
    ∴AF和BF平分∠BAC和∠ABC,FD⊥AB,
    ∴∠BAF=∠CAB,∠ABF=,
    ∴∠BAF+∠ABF=(∠BAC+∠ABC)==45°,
    ∴∠AFB=135°,
    可以按以下步骤作图(如图3):
    ①以BA为直径作圆,作AB的垂直平分线交圆于点E,
    ②以E为圆心,AE为半径作圆,
    ③过点D作AB的垂线,交圆于F,
    ④连接EF并延长交圆于C,连接AC,BC,
    则△ABC就是求作的三角形.

    【点睛】
    本题考查三角形的内切圆性质、切线长定理、勾股定理、矩形的判定与性质、尺规作图-作垂线,熟练掌握相关知识的联系与运用是解答的关键.
    3、(1)EF、CD;(2)①;②;(3);(4)或
    【分析】
    (1)的半径为1,则的最长的弦长为2,根据两点的距离可得,进而即可求得答案;
    (2)①根据定义作出图形,根据轴对称的方法求得对称轴,反射线段经过对应圆心的中点,即可求得的坐标;②由①可得当时,yM,设当取得最大值时,过点作轴,根据题意,分别为沿直线y=x的方向向上平移一段距离S 后的对应点,则,根据余弦求得进而代入数值列出方程,解方程即可求得的最大值,进而求得的范围;
    (3)根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过作的垂线,则即为反射轴,反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线,求得半径为,根据圆的面积公式进行计算即可;
    (4)根据(2)的方法找到所在的圆心,当M点在圆上运动一周时,如图,取的中点,的中点,即的中点在以为圆心,半径为的圆上运动,进而即可求得反射轴l与y轴交点的纵坐标的取值范围
    【详解】
    (1)的半径为1,则的最长的弦长为2
    根据两点的距离可得

    故符合题意的“反射线段”有EF、CD;
    故答案为:EF、CD
    (2)①如图,过点作轴于点,连接

    A点坐标为(0,2),B点坐标为(1,1),
    ,且,
    的半径为1,
    ,且
    线段AB是⊙O的以直线l为对称轴的“反射线段”,,

    ②由①可得当时,yM

    如图,设当取得最大值时,过点作轴,根据题意,分别为沿直线y=x的方向向上平移一段距离S 后的对应点,则,



    过中点,作直线交轴于点,则即为反射轴

    yM,





    解得(舍)

    (3)

    的半径为1,则是等边三角形,
    根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过作的垂线,则即为反射轴,
    反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线



    当M点在圆上运动一周时,求反射轴l未经过的区域的面积为.
    (4)如图,根据(2)的方法找到所在的圆心,



    ,是等腰直角三角形
    ,


    当M点在圆上运动一周时,如图,取的中点,的中点,
    是的中位线
    ,
    即的中点在以为圆心,半径为的圆上运动
    若MN是⊙O的以直线l为对称轴的“反射线段”,则为的切线
    设与轴交于点


    同理可得

    反射轴l与y轴交点的纵坐标的取值范围为或
    【点睛】
    本题考查了中心对称与轴对称,圆的相关知识,切线的性质,三角形中位线定理,余弦的定义,掌握轴对称与中心对称并根据题意作出图形是解题的关键.
    4、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)因为AB=5,作腰为5的等腰三角形即可(答案不唯一);
    (2)作边长为2,高为4的平行四边形即可;
    (3)根据(1)的结论,作BG边的中线,即可得解.
    【详解】
    解:(1)如图①中,△ABC即为所求作(答案不唯一);

    (2)如图②中,平行四边形ABCD即为所求作;

    (3)如图③中,△ABC即为所求作(答案不唯一);

    ∵AB=AG,BC=CG,
    ∴AC⊥BG,
    ∵△ABG的面积为,
    ∴△ABC的面积为5,且∠ACB=90°.
    【点睛】
    本题考查作图-应用与设计,等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    5、见解析
    【分析】
    由题意画图,再根据圆周角定理的推论即可得证结论.
    【详解】
    证明:根据题意作图如下:

    ∵BD是圆周角ABC的角平分线,
    ∴∠ABD=∠CBD,
    ∴,
    ∴AD=CD.
    【点睛】
    本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键.

    相关试卷

    沪科版第24章 圆综合与测试课后练习题:

    这是一份沪科版第24章 圆综合与测试课后练习题,共32页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试练习:

    这是一份沪科版九年级下册第24章 圆综合与测试练习,共33页。试卷主要包含了等边三角形,如图,是的直径,等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试课后复习题:

    这是一份沪科版九年级下册第24章 圆综合与测试课后复习题,共36页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map