沪科版九年级下册第24章 圆综合与测试课后复习题
展开
这是一份沪科版九年级下册第24章 圆综合与测试课后复习题,共36页。
沪科版九年级数学下册第24章圆章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点、、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是( )
A. B.
C. D.
2、如图,AB为的直径,,,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )
A. B. C.3 D.
3、如图,CD是的高,按以下步骤作图:
(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点.
(2)作直线GH交AB于点E.
(3)在直线GH上截取.
(4)以点F为圆心,AF长为半径画圆交CD于点P.
则下列说法错误的是( )
A. B. C. D.
4、的边经过圆心,与圆相切于点,若,则的大小等于( )
A. B. C. D.
5、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.
A.3π B.6π C.12π D.18π
6、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )
A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径
C.直径是最长的弦 D.垂直于弦的直径平分这条弦
7、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是( )
A. B. C. D.
8、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P. A,P分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是( )
A.20 m B.20m
C.(20 - 20)m D.(40 - 20)m
9、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为( )
A.3 B.4 C.5 D.6
10、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )
A.3 B.1 C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=110°,则的长为__.
2、数学兴趣活动课上,小方将等腰的底边BC与直线l重合,问:
(1)如图(1)已知,,点P在BC边所在的直线l上移动,小方发现AP的最小值是______;
(2)如图(2)在直角中,,,,点D是CB边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,线段CP的最小值是______.
3、如图,PA,PB分别切⊙O于点A,B,Q是优弧上一点,若∠P=40°,则∠Q的度数是________.
4、如图,半圆O中,直径AB=30,弦CD∥AB,长为6π,则由与AC,AD围成的阴影部分面积为_______.
5、如图,在平面直角坐标系xOy中,P为x轴正半轴上一点.已知点,,为的外接圆.
(1)点M的纵坐标为______;
(2)当最大时,点P的坐标为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,内接于,BC是的直径,D是AC延长线上一点.
(1)请用尺规完成基本作图:作出的角平分线交于点P.(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,过点P作,垂足为E.则PE与有怎样的位置关系?请说明理由.
2、如图,在△ABC是⊙O的内接三角形,∠B=45°,连接OC,过点A作AD∥OC,交BC的延长线于D.
(1)求证:AD是⊙O的切线;
(2)若⊙O的半径为2,∠OCB=75°,求△ABC边AB的长.
3、如图AB是⊙O的直径,弦CD⊥AB于点E,作∠FAC=∠BAC,过点C作CF⊥AF于点F.
(1)求证:CF是⊙O的切线;
(2)若sin∠CAB=,求=_______.(直接写出答案)
4、将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,∠MPN的两边分别与正方形的边BC、DC或其所在直线相交于点E、F,连接EF.
(1)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC相交时,如图1所示,请直接写出线段BE、DF、EF满足的数量关系;
(2)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC的延长线相交时,如图2所示,请直接写出线段BE、DF、EF满足的数量关系;
(3)若正方形的边长为4,在三角板旋转过程中,当∠MPN的一边恰好经过BC边的中点时,试求线段EF的长.
5、问题:如图,是的直径,点在内,请仅用无刻度的直尺,作出中边上的高.
小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.
作法:如图,
①延长交于点,延长交于点;
②分别连接,并延长相交于点;
③连接并延长交于点.
所以线段即为中边上的高.
(1)根据小芸的作法,补全图形;
(2)完成下面的证明.
证明:∵是的直径,点,在上,
∴________°.(______)(填推理的依据)
∴,.
∴,________是的两条高线.
∵,所在直线交于点,
∴直线也是的高所在直线.
∴是中边上的高.
-参考答案-
一、单选题
1、A
【分析】
设正六边形的边长为1,当在上时,过作于 而 求解此时的函数解析式,当在上时,延长交于点 过作于 并求解此时的函数解析式,当在上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.
【详解】
解:设正六边形的边长为1,当在上时,
过作于 而
当在上时,延长交于点 过作于
同理:
则为等边三角形,
当在上时,连接
由正六边形的性质可得:
由正六边形的对称性可得: 而
由正六边形的对称性可得:在上的图象与在上的图象是对称的,
在上的图象与在上的图象是对称的,
所以符合题意的是A,
故选A
【点睛】
本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.
2、D
【分析】
连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得
【详解】
如图,连接,
,
是直角三角形,且
是等边三角形
是直径,
故选D
【点睛】
本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.
3、C
【分析】
连接AF、BF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.
【详解】
解:连接AF、BF,由作法可知,FE垂直平分AB,
∴,故A正确;
∵CD是的高,
∴,故B正确;
∵,,
∴,故C错误;
∵,
∴∠AFE=45°,
同理可得∠BFE=45°,
∴∠AFB=90°,
,故D正确;
故选:C.
【点睛】
本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.
4、A
【分析】
连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
【详解】
解:连接,
,
,
与圆相切于点,
,
,
故选:A.
【点睛】
本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
5、B
【分析】
利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
【详解】
解:它的侧面展开图的面积=×2×2×3=6(cm2).
故选:B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
6、A
【分析】
定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.
【详解】
A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;
B、C选项,根据圆的定义可以得到;
D选项,是垂径定理;
故选:A
【点睛】
本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.
7、C
【分析】
如图,过点C作CT⊥AB于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,解直角三角形求出AB,求出CT的最大值,可得结论.
【详解】
解:如图,过点C作 CT⊥AB 于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,
由题意可得AB垂直平分线段OK,
∴AO=AK,OH=HK=3,
∵OA=OK,
∴OA=OK=AK,
∴∠OAK=∠AOK=60°,
∴AH=OA×sin60°=6×=3,
∵OH⊥AB,
∴AH=BH,
∴AB=2AH=6,
∵OC+OH⩾CT,
∴CT⩽6+3=9,
∴CT的最大值为9,
∴△ABC的面积的最大值为=27,
故选:C.
【点睛】
本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型.
8、D
【分析】
根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可.
【详解】
∵人工湖面积尽量小,
∴圆以AB为直径构造,设圆心为O,
过点B作BC ⊥,垂足为C,
∵A,P分别位于B的西北方向和东北方向,
∴∠ABC=∠PBC=∠BOC=∠BPC=45°,
∴OC=CB=CP=20,
∴OP=40,OB==,
∴最小的距离PE=PO-OE=40 - 20(m),
故选D.
【点睛】
本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.
9、B
【分析】
由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.
【详解】
∵PA,PB是⊙O的切线,A,B为切点,
∴,,
∴在和中,,
∴,
∴.
故选:B
【点睛】
本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.
10、D
【分析】
根据题意及旋转的性质可得是等边三角形,则,,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.
【详解】
解:如图,设与相交于点,
,,
,
旋转,
,
是等边三角形,
,,
,
,
,
,
,
阴影部分的面积为
故选D
【点睛】
本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.
二、填空题
1、##
【分析】
连接OA、OC,先求出∠ABC的度数,然后得到∠AOC,再由弧长公式即可求出答案.
【详解】
解:连接OA、OC,如图,
∵四边形ABCD是⊙O的内接四边形,∠D=110°,
∴,
∴,
∴;
故答案为:.
【点睛】
本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式.
2、10 5
【分析】
(1)如图,作AH⊥BC于H.根据垂线段最短,求出AH即可解决问题.
(2)如图,在AB上取一点K,使得AK=AC,连接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC时,KD的值最小,求出KD的最小值即可解决问题.
【详解】
解:如图作AH⊥BC于H,
∵AB=AC=20,,
∴ ,
∵ ,
∴ ,
根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为10.
∴AP的最小值是10;
(2)如图,在AB上取一点K,使得AK=AC,连接CK,DK.
∵∠ACB=90°,∠B=30°,
∴∠CAK=60°,
∴∠PAD=∠CAK,
∴∠PAC=∠DAK,
∵PA=DA,CA=KA,
∴△PAC≌△DAK(SAS),
∴PC=DK,
∵KD⊥BC时,KD的值最小,
∵ ,
是等边三角形,
∴ ,
∴PC的最小值为5.
【点睛】
本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题.
3、70°度
【分析】
连接OA、OB,根据切线性质可得∠OAP=∠OBP=90°,再根据四边形的内角和为360°求得∠AOB,然后利用圆周角定理求解即可.
【详解】
解:连接OA、OB,
∵PA,PB分别切⊙O于点A,B,
∴∠OAP=∠OBP=90°,又∠P=40°,
∴∠AOB=360°-90°-90°-40°=140°,
∴∠Q=∠AOB=70°,
故答案为:70°.
【点睛】
本题考查切线性质、四边形内角和为360°、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键.
4、45
【分析】
连接OC,OD,根据同底等高可知S△ACD=S△OCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.
【详解】
解:连接OC,OD,
∵直径AB=30,
∴OC=OD=,
∴CD∥AB,
∴S△ACD=S△OCD,
∵长为6π,
∴阴影部分的面积为S阴影=S扇形OCD=,
故答案为:45π.
【点睛】
本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.
5、5 (4,0)
【分析】
(1)根据点M在线段AB的垂直平分线上求解即可;
(2)点P在⊙M切点处时,最大,而四边形OPMD是矩形,由勾股定理求解即可.
【详解】
解:(1)∵⊙M为△ABP的外接圆,
∴点M在线段AB的垂直平分线上,
∵A(0,2),B(0,8),
∴点M的纵坐标为:,
故答案为:5;
(2)过点,,作⊙M与x轴相切,则点M在切点处时,最大,
理由:
若点是x轴正半轴上异于切点P的任意一点,
设交⊙M于点E,连接AE,则∠AEB=∠APB,
∵∠AEB是ΔAE的外角,
∴∠AEB>∠AB,
∵∠APB>∠AB,即点P在切点处时,∠APB最大,
∵⊙M经过点A(0,2)、B(0,8),
∴点M在线段AB的垂直平分线上,即点M在直线y=5上,
∵⊙M与x轴相切于点P,MP⊥x轴,从而MP=5,即⊙M的半径为5,
设AB的中点为D,连接MD、AM,如上图,则MD⊥AB,AD=BD=AB=3,BM=MP=5,
而∠POD=90°,
∴四边形OPMD是矩形,从而OP=MD,
由勾股定理,得
MD=,
∴OP=MD=4,
∴点P的坐标为(4,0),
故答案为:(4,0).
【点睛】
本题考查了切线的性质,线段垂直平分线的性质,矩形的判定及勾股定理,正确作出图形是解题的关键.
三、解答题
1、
(1)作图见解析
(2)是的切线,理由见解析
【分析】
(1)如图1所示,以点为圆心,大于为半径画弧,交于点,交于点;分别以点为圆心,大于的长度为半径画弧,交点为,连接即为角平分线,与的交点即为点.
(2)如图2所示,连接,由题意可知,,,,;在四边形中,,,求出,得出,由于是半径,故有是的切线.
(1)
解:如图1所示
(2)
解:是的切线.
如图2所示,连接
由题意可知,,
,,
在四边形中
∵
∴
∴
又∵是半径
∴是的切线
【点睛】
本题考查了角平分线的画法与性质,切线的判定,圆周角等知识点.解题的关键在于将知识综合灵活运用.
2、(1)见解析;(2)
【分析】
(1)如图所示,连接OA,由圆周角定理可得∠COA=90°,再由平行线的性质得到∠OAD+∠COA=180°,则∠OAD=90°,由此即可证明;
(2)连接OB,过点O作OE⊥AB,垂足为E,先由等腰三角形的性质与三角形内角和定理求出∠COB =30°,则∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,则AB=.
【详解】
解:(1)如图所示,连接OA,
∵∠CBA=45°,
∴∠COA=90°,
∵AD∥OC,
∴∠OAD+∠COA=180°,
∴∠OAD=90°,
又∵点A在圆O上,
∴AD是⊙O的切线;
(2)连接OB,过点O作OE⊥AB,垂足为E,
∵∠OCB=75°,OB=OC,
∴∠OCB=∠OBC=75°,
∴∠COB=180°-∠OCB-∠OBC=30°,
由(1)证可得∠AOC=90°,
∴∠AOB=120°,
∵OA=OB,
∴∠OAB=∠OBA=30°,
又∵OE⊥AB,
∴AE=BE,
在Rt△AOE中,AO=2,∠OAE=30°,
∴OE=AO=1,
由勾股定理可得,,
∴AB=.
【点睛】
本题主要考查了圆周角定理,切线的判定,等腰三角形的性质与判定,含30度角的直角三角形的性质,三角形内角和定理,勾股定理,熟知相关知识是解题的关键.
3、
(1)见解析
(2)
【分析】
(1)如图,连接OC,根据等腰三角形的性质可得∠CAB=∠ACO,即可得出∠FAC=∠ACO,可得AF//OC,根据平行线的性质可得∠AFC+∠OCF=180°,根据CF⊥AF可得∠OCF=90°,即可得出CF是⊙O的切线;
(2)利用AAS可证明△AFC≌△AEC,可得S△AFC=S△AEC,根据垂径定理可得CE=DE,可得S△BCD=2S△BCE,根据AB是直径可得∠ACB=90°,根据角的和差关系可得∠BCE=∠CAB,根据正弦的定义可得,可得BE=,AB=,进而可得AE=,根据三角形面积公式即可得答案.
(1)
(1)如图,连接OC,
∵OA=OC,
∴∠CAB=∠ACO,
∵∠FAC=∠BAC,
∴∠FAC=∠ACO,
∴AF//OC,
∴∠AFC+∠OCF=180°,
∵CF⊥AF,
∴∠OCF=90°,即OC⊥CF,
∴CF是⊙O的切线.
(2)
在△AFC和△AEC中,,
∴△AFC≌△AEC,
∴S△AFC=S△AEC,
∵AB是⊙O的直径,CD⊥AB,
∴CE=DE,
∴S△BCD=2S△BCE,
∵∠BCE+∠CBA=90°,∠CAB+∠CBA=90°,
∴∠BCE=∠CBA,
∵sin∠CAB=,
∴sin∠CAB=sin∠BCE=,
∴BE=,AB=,
∴AE=,
∴====.
故答案为:
【点睛】
本题考查切线的判定、圆周角定理、垂径定理、全等三角形的判定与性质及三角函数的定义,经过半径的外端点,且垂直于这条半径的直线是圆的切线;直径所对的圆周角是90°;垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧;在直角三角形中,锐角的正弦是锐角的对边与斜边的比值;熟练掌握相关性质及判定定理是解题关键.
4、(1)EF=DF+BE;(2)EF=DF-BE;(3)线段EF的长为或.
【分析】
(1)延长FD至G,使DG=BE,连接AG,先证△ABE≌△ADG,再证△GAF≌△EAF即可;
(2)在DC上截取DH=BE,连接AH,先证△ADH≌△ABE,再证△HAF≌EAF即可;
(3)分两种情形分别求解即可解决问题.
【详解】
解:(1)结论:EF=BE+DF.
理由:延长FD至G,使DG=BE,连接AG,如图①,
∵ABCD是正方形,
∴AB=AD,∠ABE=ADG=∠DAB=90°,
∴△ABE≌△ADG(AAS),
∴AE=AG,∠DAG=∠EAB,
∵∠EAF=45°,
∴∠DAF+∠EAB=45°,
∴∠DAF+∠DAG=45°,
∴∠GAF=∠EAF=45°,
∵AF=AF,
∴△GAF≌△EAF(AAS),
∴EF=GF,
∴GF=DF+DG=DF+BE,
即:EF=DF+BE;
(2)结论:EF=DF-BE.
理由:在DC上截取DH=BE,连接AH,如图②,
∵AD=AB,∠ADH=∠ABE=90°,
∴△ADH≌△ABE(SAS),
∴AH=AE,∠DAH=∠EAB,
∵∠EAF=∠EAB+∠BAF=45°,
∴∠DAH+∠BAF=45°,
∴∠HAF=45°=∠EAF,
∵AF=AF,
∴△HAF≌EAF(SAS),
∴HF=EF,
∵DF=DH+HF,
∴EF=DF-BE;
(3)①当MA经过BC的中点E时,同(1)作辅助线,如图:
设FD=x,由(1)的结论得FG=EF=2+x,FC=4-x.
在Rt△EFC中,(x+2)2=(4-x)2+22,
∴x=,
∴EF=x+2=.
②当NA经过BC的中点G时,同(2)作辅助线,
设BE=x,由(2)的结论得EC=4+x,EF=FH,
∵K为BC边的中点,
∴CK=BC=2,
同理可证△ABK≌FCK(SAS),
∴CF=AB=4,EF=FH=CF+CD-DH=8-x,
在Rt△EFC中,由勾股定理得到:(4+x)2+42=(8-x)2,
∴x=,
∴EF=8-=.
综上,线段EF的长为或.
【点睛】
本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.
5、(1)见详解;(2)90,直径所对的圆周角是直角,BD.
【分析】
(1)根据作图步骤作出图形即可;
(2)根据题意填空,即可求解.
【详解】
解:(1)如图,CH为△ABC中AB边上的高;
(2)证明:∵是的直径,点,在上,
∴___90_°.(__直径所对的圆周角是直角_)(填推理的依据)
∴,.
∴,_BD__是的两条高线.
∵,所在直线交于点,
∴直线也是的高所在直线.
∴是中边上的高.
故答案为:90,直径所对的圆周角是直角,BD.
【点睛】
本题考查了圆周角定理的推理,三角形的三条高线相交于一点等知识,熟知两个定理,并根据题意灵活应用是解题关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试习题,共25页。试卷主要包含了如图,点A等内容,欢迎下载使用。
这是一份沪科版九年级下册第24章 圆综合与测试课堂检测,共29页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试复习练习题,共30页。试卷主要包含了等边三角形等内容,欢迎下载使用。