![2022年必考点解析沪科版九年级数学下册第24章圆单元测试练习题(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12683284/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪科版九年级数学下册第24章圆单元测试练习题(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12683284/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪科版九年级数学下册第24章圆单元测试练习题(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12683284/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪科版九年级下册第24章 圆综合与测试单元测试课后测评
展开
这是一份沪科版九年级下册第24章 圆综合与测试单元测试课后测评,共30页。
沪科版九年级数学下册第24章圆单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=( )A.10 B.2 C.2 D.42、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )A. B. C. D.3、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,,,则阴影部分的面积为( )A. B. C. D.4、如图,四边形内接于,如果它的一个外角,那么的度数为( )A. B. C. D.5、如图,,,,都是上的点,,垂足为,若,则的度数为( )A. B. C. D.6、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )A.19° B.38° C.52° D.76°7、下列图形中,既是中心对称图形也是轴对称图形的是( )A. B. C. D.8、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.9、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )A.不变 B.面积扩大为原来的3倍C.面积扩大为原来的9倍 D.面积缩小为原来的10、如图,AB为的直径,,,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )A. B. C.3 D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为______.2、已知⊙A的半径为5,圆心A(4,3),坐标原点O与⊙A的位置关系是______.3、如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P=58°,则∠ACB的大小是___________.4、若一次函数y=kx+8(k≠0)的图象与x轴、y轴分别交于A、B两点,当k的取值变化时,点A随之在x轴上运动,将线段AB绕点B逆时针旋转90°得到BQ,连接OQ,则OQ长的最小值是 ___.5、在平面直角坐标系中,点关于原点对称的点的坐标是______.三、解答题(5小题,每小题10分,共计50分)1、如图,在⊙O中,点E是弦CD的中点,过点O,E作直径AB(AE>BE),连接BD,过点C作CFBD交AB于点G,交⊙O于点F,连接AF.求证:AG=AF.2、阅读下列材料,完成相应任务:如图①,是⊙O的内接三角形,是⊙O的直径,平分交⊙O于点,连接,过点作⊙O的切线,交的延长线于点.则.下面是证明的部分过程:证明:如图②,连接,是⊙O的直径,,①________.(1)为⊙O的切线,,,(2)由(1)(2)得,②________________.平分.,③________,.任务:(1)请按照上面的证明思路,补全证明过程:①________,②________,③________;(2)若,求的长.3、已知,P是直线AB上一动点(不与A,B重合),以P为直角顶点作等腰直角三角形PBD,点E是直线AD与△PBD的外接圆除点D以外的另一个交点,直线BE与直线PD相交于点F.(1)如图,当点P在线段AB上运动时,若∠DBE=30°,PB=2,求DE的长;(2)当点P在射线AB上运动时,试探求线段AB,PB,PF之间的数量关系,并给出证明.4、如图,AB为⊙O的切线,B为切点,过点B作BC⊥OA,垂足为点E,交⊙O于点C,连接CO并延长CO与AB的延长线交于点D,连接AC.(1)求证:AC为⊙O的切线;(2)若⊙O半径为2,OD=4.求线段AD的长.5、如图,,是的两条切线,切点分别为,,连接并延长交于点,过点作的切线交的延长线于点,于点.(1)求证:四边形是矩形;(2)若,,求的长.. -参考答案-一、单选题1、D【分析】首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在Rt△B'C'C中利用勾股定理求解.【详解】解:∵在Rt△ABC中,AB=6,BC=8,∴,由旋转性质可知,AB= AB'=6,BC= B'C'=8,∴B'C=10-6=4,在Rt△B'C'C中,,故选:D.【点睛】本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键.2、A【分析】连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.【详解】解:连结OC,∵以边上一点为圆心作,恰与边,分别相切于点A, ,∴DC=AC,OC平分∠ACD,∵,,∴∠ACD=90°-∠B=60°,∴∠OCD=∠OCA==30°,在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,∴OD=OA=1,DC=AC=,∴,,∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,∴,S阴影=.故选择A.【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.3、B【分析】由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.【详解】解:根据题意,如图:∵AB是的直径,OD是半径,,∴AE=CE,∴阴影CED的面积等于AED的面积,∴,∵,,∴,∴;故选:B【点睛】本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.4、D【分析】由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD=2∠A=128°.【详解】∵∴∵四边形内接于∴又∵∴.故选:D.【点睛】本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.5、B【分析】连接OC.根据确定,,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出.【详解】解:如下图所示,连接OC.∵,∴,.∴.∵.∴.∴∵和分别是所对的圆周角和圆心角,∴.故选:B.【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.6、B【分析】连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 为的直径, 为的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.7、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.8、D【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.【详解】设原来扇形的半径为r,圆心角为n,∴原来扇形的面积为,∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的,∴变化后的扇形的半径为3r,圆心角为,∴变化后的扇形的面积为,∴扇形的面积不变.故选:A.【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.10、D【分析】连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得【详解】如图,连接, ,是直角三角形,且是等边三角形是直径,故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.二、填空题1、##【分析】如图所示,取D(-2,0),连接BD,连接CD与圆C交于点,先求出A点坐标,从而可证OM是△ABD的中位线,得到,则当BD最小时,OM也最小,即当B运动到时,BD有最小值,由此求解即可.【详解】解:如图所示,取D(-2,0),连接BD,连接CD与圆C交于点∵点C的坐标为(2,2),圆C与x轴相切于点A,∴点A的坐标为(2,0),∴OA=OD=2,即O是AD的中点,又∵M是AB的中点, ∴OM是△ABD的中位线,∴,∴当BD最小时,OM也最小,∴当B运动到时,BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案为:.【点睛】本题主要考查了坐标与图形,一点到圆上一点的距离得到最小值,两点距离公式,三角形中位线定理,把求出OM的最小值转换成求BD的最小值是解题的关键.2、在⊙A上【分析】先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与⊙A的位置关系.【详解】解:∵点A的坐标为(4,3),∴OA==5,∵半径为5,∴OA=r,∴点O在⊙A上.故答案为:在⊙A上.【点睛】本题考查了点与圆的位置关系:点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,当点P在圆外⇔d>r;当点P在圆上⇔d=r;当点P在圆内⇔d<r.3、或【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PM,PN分别与⊙O相切于A,B两点, 故答案为:或【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.4、8【分析】根据一次函数解析式可得:,,过点B作轴,过点A作,过点Q作,由旋转的性质可得,,依据全等三角形的判定定理及性质可得:≅,,,即可确定点Q的坐标,然后利用勾股定理得出OQ的长度,最后考虑在什么情况下取得最小值即可.【详解】解:函数得:,,过点B作轴,过点A作,过点Q作,连接OQ,如图所示:将线段BA绕点B逆时针旋转得到线段BQ,∴,,∴∴,在与中,,∴≅,∴,,点Q的坐标为,∴当或时,取得最小值为8,故答案为:8.【点睛】题目主要考查一次函数与几何的综合问题,包括与坐标轴的交点,旋转,全等三角形的判定和性质,勾股定理等,理解题意,作出相应图形是解题关键.5、(3,4)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【详解】:由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),故答案为:(3,4).【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.三、解答题1、见解析【分析】由题意易得AB⊥CD,,则有,由平行线的性质可得,然后可得,进而问题可求证.【详解】证明:∵AB为⊙O的直径,点E是弦CD的中点,∴AB⊥CD,∴,∴,∵CF∥BD,∴,∴,∴.【点睛】本题主要考查垂径定理、平行线的性质及圆周角定理,熟练掌握垂径定理、平行线的性质及圆周角定理是解题的关键.2、(1),,;(2)【分析】(1)由是⊙O的直径,得到∠ODB.再由为⊙O的切线,得到,即可推出∠ODA=∠BDE,由角平分线的定义可得,由,得到,即可证明;(2)在直角△ODE中利用勾股定理求解即可.【详解】解:(1)如图②,连接,是⊙O的直径,,∠ODB.(1)为⊙O的切线,,,(2)由(1)(2)得,∠ODA=∠BDE.平分,∴.,∠ODA,.故答案为:① ,② ,③ ;(2)为的切线,.,,,.在中,.【点睛】本题主要考查了切线的性质,角平分线的定义,等腰三角形的性质,直径所对的圆周角是直角,勾股定理等等,解题的关键在于能够熟练掌握切线的性质.3、(1) (2)PF=AB-PB或PF=AB+PB,理由见解析【分析】(1)根据△PBD等腰直角三角形,PB=2,求出DB的长,由⊙O是△PBD的外接圆,∠DBE=30°,可得答案;(2)根据同弧所对的圆周角,可得∠ADP=∠FBP,由△PBD等腰直角三角形,得∠DPB=∠APD=90°,DP=BP,可证△APD≌△FPB,可得答案.【详解】解:(1)由题意画以下图,连接EP,∵△PBD等腰直角三角形,⊙O是△PBD的外接圆,∴∠DPB=∠DEB=90°,∵PB=2,∴ ,∵∠DBE=30°,∴ (2)①点P在点A、B之间,由(1)的图根据同弧所对的圆周角相等,可得:∠ADP=∠FBP,又∵△PBD等腰直角三角形,∴∠DPB=∠APD=90°,DP=BP,在△APD和△FPB中∴△APD≌△FPB∴AP=FP,∵AP+PB=AB∴FP+PB=AB,∴FP=AB-PB,②点P在点B的右侧,如下图:∵△PBD等腰直角三角形,∴∠DPB=∠APF=90°,DP=BP,∵∠PBF+∠EBP=180°,∠PDA+∠EBP=180°,∴∠PBF=∠PDA,在△APD和△FPB中∴△APD≌△FPB∴AP=FP,∴AB+PB=AP,∴AB+PB=PF,∴PF= AB+PB.综上所述,FP=AB-PB或PF= AB+PB.【点睛】本题考查了圆的性质,等腰直角三角形,三角形全等的判定,做题的关键是注意(2)的两种情况.4、(1)见解析;(2)4【分析】(1)连接OB,证明△AOB≌△AOC(SSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;(2)在Rt△BOD中,勾股定理求得BD,根据sinD==,代入数值即可求得答案【详解】解:(1)连接OB,∵AB是⊙O的切线,∴OB⊥AB,即∠ABO=90°,∵BC是弦,OA⊥BC,∴CE=BE,∴AC=AB,在△AOB和△AOC中,,∴△AOB≌△AOC(SSS),∴∠ACO=∠ABO=90°,即AC⊥OC,∴AC是⊙O的切线;(2)在Rt△BOD中,由勾股定理得,BD==2,∵sinD==,⊙O半径为2,OD=4.∴=,解得AC=2,∴AD=BD+AB=4.【点睛】本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键.5、(1)见详解;(2)7【分析】(1)根据切线的性质和矩形的判定定理即可得到结论;(2)根据切线长定理可得AB=AC,BE=DE,再利用勾股定理即可求解.【详解】(1)证明:∵,DE是的两条切线,于点∴∠EFC=∠EDC=∠FCD=90°,∴四边形是矩形;(2)∵四边形是矩形,∴EF=,CF=,∵,,DE是的两条切线,∴AB=AC,BE=DE,设AB=AC=x,则AE=x+2,AF=x-2,在中,,解得:x=5,∴AC=5+2=7.【点睛】本题主要考查切线长定理和勾股定理以及矩形的判定定理,掌握切线长定理以及勾股定理是解题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课堂检测,共30页。
这是一份沪科版九年级下册第24章 圆综合与测试巩固练习,共28页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试单元测试一课一练,共30页。试卷主要包含了等边三角形,点P关于原点对称的点的坐标是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)