年终活动
搜索
    上传资料 赚现金

    2022年必考点解析沪科版九年级数学下册第24章圆课时练习试题(含详细解析)

    2022年必考点解析沪科版九年级数学下册第24章圆课时练习试题(含详细解析)第1页
    2022年必考点解析沪科版九年级数学下册第24章圆课时练习试题(含详细解析)第2页
    2022年必考点解析沪科版九年级数学下册第24章圆课时练习试题(含详细解析)第3页
    还剩23页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    九年级下册第24章 圆综合与测试课后测评

    展开

    这是一份九年级下册第24章 圆综合与测试课后测评,共26页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是(    A.  B. C.  D.2、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积(    A.不变 B.面积扩大为原来的3倍C.面积扩大为原来的9倍 D.面积缩小为原来的3、如图,四边形内接于,如果它的一个外角,那么的度数为(    A. B. C. D.4、如图,在中,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为(    A.1 B.2 C.3 D.45、如图,AB 为⊙O 的直径,弦 CDAB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为(   A.3 B.2 C.1 D.6、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是(    A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径C.直径是最长的弦 D.垂直于弦的直径平分这条弦7、下列图形中,既是轴对称图形又是中心对称图形的是(       A. B. C. D.8、已知⊙O的半径为4,,则点A在(      A.⊙O B.⊙O C.⊙O D.无法确定9、如图,ABC是正方形网格中的三个格点,则是(    A.优弧 B.劣弧 C.半圆 D.无法判断10、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为(    A.30° B.60°C.90° D.120°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、边长相等、各内角均为120°的六边形ABCDEF在直角坐标系内的位置如图所示,,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60°,经过2021次旋转之后,点B的坐标是_____________.2、如图,一次函数的图像与x轴,y轴分别相交于点A,点B,将它绕点O逆时针旋转90°后,与x轴相交于点C,我们将图像过点ABC的二次函数叫做与这个一次函数关联的二次函数.如果一次函数的关联二次函数是),那么这个一次函数的解析式为______.3、如图,在平行四边形中,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留4、如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.5、在平面直角坐标系中,A(-1,0),B(2,0),∠OCB=30°,D为线段BC的中点,线段AD交线段OC于点E,则△AOE面积的最大值为___________三、解答题(5小题,每小题10分,共计50分)1、如图,△ABC内接于⊙OD是⊙O的直径AB的延长线上一点,∠DCB=∠OAC.过圆心OBC的平行线交DC的延长线于点E(1)求证:CD是⊙O的切线;(2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.2、如图,在RtABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点CA的对应点分别为EF.点E落在BA上,连接AF(1)若∠BAC=40°,求∠BAF的度数;(2)若AC=8,BC=6,求AF的长.3、如图,在直角坐标系中,将△ABC绕点A顺时针旋转90°.(1)画出旋转后的△AB1C1,并写出B1C1的坐标;(2)求线段AB在旋转过程中扫过的面积.4、如图,在中,,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F(1)求的度数;(2)若,且,求DF的长.5、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则__. -参考答案-一、单选题1、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.不是轴对称图形,是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.【详解】设原来扇形的半径为r,圆心角为n∴原来扇形的面积为∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的∴变化后的扇形的半径为3r,圆心角为∴变化后的扇形的面积为∴扇形的面积不变.故选:A.【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.3、D【分析】由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD=2∠A=128°.【详解】∵四边形内接于又∵故选:D.【点睛】本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.4、B【分析】由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2.【详解】由题意以及旋转的性质知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°为等边三角形,即AB= AD =BD=2CD=BC-BD=4-2=2故选:B.【点睛】本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.5、B【分析】连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.【详解】解:连接OC,如图AB 为⊙O 的直径,CDAB,垂足为点 ECD=8,故选:B【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出6、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;B、C选项,根据圆的定义可以得到;D选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.7、D【详解】解:.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;.不是轴对称图形,是中心对称图形,故本选项不符合题意;.是轴对称图形,不是中心对称图形,故本选项不符合题意;.既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、C【分析】根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.【详解】解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,d>r∴点A在⊙O外,故选:C.【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔dr;②点P在圆上⇔d=r;③点P在圆内⇔dr9、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.【详解】解;如图,分别连接ABACBC,取任意两条线段的中垂线相交,交点就是圆心.故选:B.【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.10、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.二、填空题1、【分析】根据旋转找出规律后再确定坐标.【详解】∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组循环,∴经过2021次翻转为第337循环组的第5次翻转,点B在开始时点C的位置,∴翻转前进的距离为:如图,过点BBGxG则∠BAG=60°,∴点B的坐标为故答案为:【点睛】题考查旋转的性质与正多边形,由题意找出规律是解题的关键.2、【分析】由题意可知二次函数与坐标轴的三个交点坐标为(0,k),(1,0),(-k,0),将其代入抛物线)即可得mk的二元一次方程组,即可解出,故这个一次函数的解析式为【详解】一次函数y轴的交点为(0,k),与x轴的交点为(1,0)O点逆时针旋转90°后,与x轴的交点为(-k,0)即(0,k),(1,0),(-k,0)过抛物线代入整理得解得k=3或k=-1(舍)k=3代入故方程组的解为则一次函数的解析式为故答案为:【点睛】本题考查了一次函数和二次函数的图象及其性质,解二元一次方程组,结合旋转的性质以及图象得出抛物线与坐标轴的三个交点坐标是解题的关键.3、【分析】过点C于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可.【详解】解:过点C于点H在平行四边形中,平行四边形的面积为:图中黑色阴影部分的面积为:故答案为:【点睛】本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键.4、        【分析】OOC垂直于弦AB,利用垂径定理得到CAB的中点,然后由OA=OB,且∠AOB为直角,得到三角形OAB为等腰直角三角形,由斜边AB的长,利用勾股定理求出直角边OA的长即可;再由CAB的中点,由AB的长求出AC的长,在直角三角形OAC中,由OAAC的长,利用勾股定理即可求出OC的长,即为O点到AB的距离.【详解】解:过OOCAB,则有CAB的中点,OA=OB,∠AOB=90°,AB=a∴根据勾股定理得: OA2+OB2=ABOA=RtAOC中,OA=AC=AB=根据勾股定理得:OC==故答案为:【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及勾股定理,在圆中遇到弦,常常过圆心作弦的垂线,根据近垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.5、【分析】过点轴,交于点,根据中位线定理可得,设点轴的距离为G,则△AOE边上的高,作的外接圆,则当点位于图中处时,最大,根据三角形面积公式计算即可.【详解】解:过点轴,交于点A(-1,0),B(2,0),D为线段BC的中点,轴,设点轴的距离为则△AOE边上的高的外接圆,则当点位于图中处时,最大,因为为等边三角形,,,故答案为:.【点睛】本题考查了三角形中位线定理,圆周角定理,圆周角和圆心角的关系,等边三角形的判定与性质,解直角三角形等知识点,根据题意得出点的位置是解本题的关键.三、解答题1、(1)见解析(2)3,2【分析】(1)由等腰三角形的性质与已知条件得出,∠OCA=∠DCB,由圆周角定理可得∠ACB=90°,进而得到∠OCD=90°,即可得出结论;(2)根据平行线分线段成比例定理得到,设BD=2x,则OB=OC=3xOD=OB+BD=5x,在RtOCD中,根据勾股定理求出x=1,即⊙O的半径为3,由平行线的性质得到∠OCB=∠EOC,在RtOCE中,可求得tan∠EOC=2,即tan∠OCB=2.(1)证明:∵OAOC∴∠OAC=∠OCA∵∠DCB=∠OAC∴∠OCA=∠DCB      AB是⊙O的直径,∴∠ACB=90°,∴∠OCA+∠OCB=90°,∴∠DCB+∠OCB=90°,即∠OCD=90°,OCDC      OC是⊙O的半径,CD是⊙O的切线;(2)OEBCCD=4,CE=6,BD=2x,则OB=OC=3xOD=OB+BD=5xOCDC∴△OCD是直角三角形,RtOCD中,OC2+CD2=OD2∴(3x2+42=(5x2解得,x=1,OC=3x=3,即⊙O的半径为3,BCOE∴∠OCB=∠EOCRtOCE中,tanEOC=∴tan∠OCB=tan∠EOC=2.【点睛】本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键.2、(1)65°(2)【分析】(1)根据三角形的内角和定理得到∠ABC=50°,根据旋转的性质得到∠EBF=∠ABC=50°,AB=BF,根据三角形的内角和定理即可得到结论;(2)根据勾股定理得到AB=10,根据旋转的性质得到BE=BC=6,EF=AC=8,根据勾股定理即可得到结论.【小题1】解:在RtABC中,∠C=90°,∠BAC=40°,∴∠ABC=50°,∵将△ABC绕着点B逆时针旋转得到△FBE∴∠EBF=∠ABC=50°,AB=BF∴∠BAF=∠BFA=(180°-50°)=65°;【小题2】∵∠C=90°,AC=8,BC=6,AB=10,∵将△ABC绕着点B逆时针旋转得到△FBEBE=BC=6,EF=AC=8,AE=AB-BE=10-6=4,AF=【点睛】本题考查了旋转的性质,勾股定理,熟练掌握旋转的性质是解题的关键.3、(1)作图见解析,;(2)【分析】(1)将绕点A顺时针旋转90°得,根据点A、B、C坐标,即可确定出点的坐标;(2)根据勾股定理求出AB的长,由扇形面积公式即可得出答案.【详解】(1)将绕点A顺时针旋转90°得如图所示:(2)由图可知:∴线段AB在旋转过程中扫过的面积为【点睛】本题考查作旋转图形以及扇形的面积公式,掌握旋转的性质及扇形的面积公式是解题的关键.4、(1)45°;(2)【分析】(1)根据旋转的性质得,通过等量代换及三角形内角和得,根据四点共圆即可求得;(2)连接EB,先证明出,根据全等三角形的性质得,在中利用勾股定理,即可求得.【详解】解:(1)由旋转可知:由三角形内角和定理得∴点ADFE共圆.(2)连接EB又∵中,【点睛】本题考查了旋转的性质、三角形全等判定及性质、勾股定理、三角形内角和等,解题的关键是掌握旋转的性质.5、2+【分析】连接ACCMAB,过点CCHOAH,设OC=a.利用勾股定理构建方程解决问题即可.【详解】解:连接ACCMAB,过点CCHOAH,设OC=a∵∠AOB=90°,AB是直径,A(-4,0),B(0,2),∵∠AMC=2∠AOC=120°,RtCOH中,RtACH中,AC2=AH2+CH2a=2+ 或2-(因为OCOB,所以2-舍弃),OC=2+故答案为:2+【点睛】本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题. 

    相关试卷

    2021学年第24章 圆综合与测试同步练习题:

    这是一份2021学年第24章 圆综合与测试同步练习题,共30页。试卷主要包含了等边三角形等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题,共31页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试同步测试题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步测试题,共34页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map