终身会员
搜索
    上传资料 赚现金

    2021-2022学年最新沪科版九年级数学下册第24章圆专项攻克试卷(精选含详解)

    立即下载
    加入资料篮
    2021-2022学年最新沪科版九年级数学下册第24章圆专项攻克试卷(精选含详解)第1页
    2021-2022学年最新沪科版九年级数学下册第24章圆专项攻克试卷(精选含详解)第2页
    2021-2022学年最新沪科版九年级数学下册第24章圆专项攻克试卷(精选含详解)第3页
    还剩24页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试课时训练

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时训练,共27页。


    沪科版九年级数学下册第24章圆专项攻克

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、若的圆心角所对的弧长是,则此弧所在圆的半径为(   

    A.1 B.2 C.3 D.4

    2、下列图形中,可以看作是中心对称图形的是(   

    A. B. C. D.

    3、如图,PAPB是⊙O的切线,AB为切点,PA=4,则PB的长度为(   

    A.3 B.4 C.5 D.6

    4、如图,在Rt△ABC中,,以边上一点为圆心作,恰与边分别相切于点,则阴影部分的面积为(   

    A. B. C. D.

    5、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点AB的对应点分别为DE,连接AD.当点ADE在同一条直线上时,则∠BAD的大小是(  )

    A.80° B.70° C.60° D.50°

    6、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是(   

    A.50° B.70° C.110° D.120°

    7、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为(   

    A.25° B.80° C.130° D.100°

    8、下列图形中,既是轴对称图形,又是中心对称图形的是(  )

    A. B. C. D.

    9、如图,CD的高,按以下步骤作图:

    (1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于GH两点.

    (2)作直线GHAB于点E.

    (3)在直线GH上截取

    (4)以点F为圆心,AF长为半径画圆交CD于点P

    则下列说法错误的是(   

        

    A. B. C. D.

    10、如图,PAPB是⊙O的切线,AB是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为(  

    A.70° B.50° C.20° D.40°

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、已知⊙A的半径为5,圆心A(4,3),坐标原点O与⊙A的位置关系是______.

    2、如图,正六边形ABCDEF内接于⊙O,若⊙O的周长为8π,则正六边形的边长为________.

    3、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是___________.

    4、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为________

    5、如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,在△ABC中,∠ACB=90°,AC=BCDAB边上一点(与AB不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DEBE

    (1)求证:△ACD≌△BCE

    (2)若BE=5,DE=13,求AB的长

    2、如图,AB为⊙O的切线,B为切点,过点BBCOA,垂足为点E,交⊙O于点C,连接CO并延长COAB的延长线交于点D,连接AC

    (1)求证:AC为⊙O的切线;

    (2)若⊙O半径为2,OD=4.求线段AD的长.

    3、(教材呈现)下图是华师版九年级下册数学教材第43页的部分内容.

    圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.

    由圆周角定理,可以得到以下推论:推论1  90°的圆周角所对的弦是直径.(如图)

    (推论证明)已知:△ABC的三个顶点都在⊙O上,且∠ACB=90°.

    求证:线段AB是⊙O的直径.

    请你结合图①写出推论1的证明过程.

    (深入探究)如图②,点ABCD均在半径为1的⊙O上,若∠ACB=90°,∠ACD=60°.则线段AD的长为         

    (拓展应用)如图③,已知△ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点EBC的中点,连结DE. 若AB,则DE的长为          

    4、如图,已知线段,点A在线段上,且,点B为线段上的一个动点.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为.若旋转后MN两点重合成一点C(即构成),设

    (1)的周长为_______;

    (2)若,求x的值.

    5、如图,已知的直径,于点C,交的延长线于点D,且

    (1)求的大小;

    (2)若,求的长.

     

    -参考答案-

    一、单选题

    1、C

    【分析】

    先设半径为r,再根据弧长公式建立方程,解出r即可

    【详解】

    设半径为r

    则周长为2πr

    120°所对应的弧长为

    解得r=3

    故选C

    【点睛】

    本题考查弧长计算,牢记弧长公式是本题关键.

    2、B

    【分析】

    把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.

    【详解】

    A.不是中心对称图形,故本选项不符合题意;

    B.是中心对称图形,故本选项符合题意;

    C.不是中心对称图形,故本选项不符合题意;

    D.不是中心对称图形,故本选项不符合题意.

    故选:B.

    【点睛】

    本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    3、B

    【分析】

    由切线的性质可推出.再根据直角三角形全等的判定条件“HL”,即可证明,即得出

    【详解】

    PAPB是⊙O的切线,AB为切点,

    ∴在中,

    故选:B

    【点睛】

    本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.

    4、A

    【分析】

    连结OC,根据切线长性质DC=ACOC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可.

    【详解】

    解:连结OC

    ∵以边上一点为圆心作,恰与边分别相切于点A,

    DC=ACOC平分∠ACD

    ∴∠ACD=90°-∠B=60°,

    ∴∠OCD=∠OCA==30°,

    在Rt△ABC中,AC=ABtanB=3×

    在Rt△AOC中,∠ACO=30°,AO=ACtan30°=

    OD=OA=1,DC=AC=

    ∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,

    S阴影=

    故选择A.

    【点睛】

    本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.

    5、A

    【分析】

    根据三角形旋转得出,根据点ADE在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.

    【详解】

    证明:∵绕点C逆时针旋转得到

    ∴∠ADC=∠DAC

    ∵点ADE在同一条直线上,

    ∴∠DAC=50°,

    ∴∠BAD=∠BAC-∠DAC=80°

    故选A.

    【点睛】

    本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.

    6、B

    【分析】

    根据旋转可得,得

    【详解】

    解:

    绕点逆时针旋转得到△,使点的对应点恰好落在边上,

    故选:B.

    【点睛】

    本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.

    7、D

    【分析】

    根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.

    【详解】

    解:∵四边形ABCD内接于⊙O

    ∴∠B+∠ADC=180°,

    ∵∠ADC=130°,

    ∴∠B=50°,

    由圆周角定理得,∠AOC=2∠B=100°,

    故选:D.

    【点睛】

    本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.

    8、C

    【详解】

    解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;

    选项B不是轴对称图形,是中心对称图形,故B不符合题意;

    选项C既是轴对称图形,也是中心对称图形,故C符合题意;

    选项D是轴对称图形,不是中心对称图形,故D不符合题意;

    故选C

    【点睛】

    本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.

    9、C

    【分析】

    连接AFBF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.

    【详解】

    解:连接AFBF,由作法可知,FE垂直平分AB

    ,故A正确;

    CD的高,

    ,故B正确;

    ,故C错误;

    ∴∠AFE=45°,

    同理可得∠BFE=45°,

    ∴∠AFB=90°,

    ,故D正确;

    故选:C.

    【点睛】

    本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.

    10、D

    【分析】

    首先连接OAOB,由PAPB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.

    【详解】

    解:连接OAOB

    PAPB为⊙O的切线,

    ∴∠OAP=∠OBP=90°,

    ∵∠ACB=70°,

    ∴∠AOB=2∠P=140°,

    ∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.

    故选:D

    【点睛】

    此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.

    二、填空题

    1、在⊙A

    【分析】

    先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与⊙A的位置关系.

    【详解】

    解:∵点A的坐标为(4,3),

    OA==5,

    ∵半径为5,

    OA=r

    ∴点O在⊙A上.

    故答案为:在⊙A上.

    【点睛】

    本题考查了点与圆的位置关系:点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,当点P在圆外⇔dr;当点P在圆上⇔d=r;当点P在圆内⇔dr

    2、4

    【分析】

    由周长公式可得⊙O半径为4,再由正多边形的中心角公式可得正六边形ABCDEF中心角为,即可知正六边形ABCDEF为6个边长为4的正三角形组成的,则可求得六边形ABCDEF边长.

    【详解】

    ∵⊙O的周长为8π

    ∴⊙O半径为4

    ∵正六边形ABCDEF内接于⊙O

    ∴正六边形ABCDEF中心角为

    ∴正六边形ABCDEF为6个边长为4的正三角形组成的

    ∴正六边形ABCDEF边长为4.

    故答案为:4.

    【点睛】

    本题考查了正多边形的中心角公式,正n边形的每个中心角都等于,由中心角为得出正六边形ABCDEF为6个边长为4的正三角形组成的是解题的关键.

    3、

    【分析】

    绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.

    【详解】

    解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是

    故答案为:

    【点睛】

    本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键.关于原点对称的两个点,横坐标、纵坐标分别互为相反数.

    4、

    【分析】

    连接OCAB于点D,再连接OA.根据轴对称的性质确定OD=CD;再根据垂径定理确定AD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度.

    【详解】

    解:如下图所示,连接OCAB于点D,再连接OA

    ∵折叠后弧的中点与圆心重叠,

    OD=CD

    AD=BD

    ∵圆形纸片的半径为10cm,

    OA=OC=10cm.

    OD=5cm.

    cm.

    BD=cm.

    cm.

    故答案为:

    【点睛】

    本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键.

    5、       

    【分析】

    OOC垂直于弦AB,利用垂径定理得到CAB的中点,然后由OA=OB,且∠AOB为直角,得到三角形OAB为等腰直角三角形,由斜边AB的长,利用勾股定理求出直角边OA的长即可;再由CAB的中点,由AB的长求出AC的长,在直角三角形OAC中,由OAAC的长,利用勾股定理即可求出OC的长,即为O点到AB的距离.

    【详解】

    解:过OOCAB,则有CAB的中点,

    OA=OB,∠AOB=90°,AB=a

    ∴根据勾股定理得: OA2+OB2=AB

    OA=

    RtAOC中,OA=AC=AB=

    根据勾股定理得:OC==

    故答案为:

    【点睛】

    此题考查了垂径定理,等腰直角三角形的性质,以及勾股定理,在圆中遇到弦,常常过圆心作弦的垂线,根据近垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.

    三、解答题

    1、(1)见解析;(2)17

    【分析】

    (1)由旋转的性质可得CDCE,∠DCE=90°=∠ACB,由“SAS”可证△ACD≌△BCE

    (2)由∠ACB=90°,ACBC,可得∠CAB=∠CBA=45°,再由△ACD≌△BCE,得到BEAD=5,∠CBE=∠CAD=45°,则∠ABE=∠ABC+∠CBE=90°,然后利用勾股定理求出BD的长即可得到答案.

    【详解】

    解:(1)证明:∵将线段CD绕点C按逆时针方向旋转90°得到线段CE

    CDCE,∠DCE=90°=∠ACB

    ∴∠ACD+∠BCD=∠BCE+∠BCD,即∠ACD=∠BCE

    在△ACD和△BCE中,

    ∴△ACD≌△BCESAS);

    (2)∵∠ACB=90°,ACBC

    ∴∠CAB=∠CBA=45°,

    ∵△ACD≌△BCE

    BEAD=5,∠CBE=∠CAD=45°,

    ∴∠ABE=∠ABC+∠CBE=90°,

    AB=AD+BD=17.

    【点睛】

    本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,证明三角形全等是解题的关键.

    2、(1)见解析;(2)4

    【分析】

    (1)连接OB,证明△AOB≌△AOCSSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;

    (2)在Rt△BOD中,勾股定理求得BD,根据sinD,代入数值即可求得答案

    【详解】

    解:(1)连接OB

    AB是⊙O的切线,

    OBAB

    即∠ABO=90°,

    BC是弦,OABC

    CEBE

    ACAB

    在△AOB和△AOC中,

    ∴△AOB≌△AOCSSS),

    ∴∠ACO=∠ABO=90°,

    ACOC

    AC是⊙O的切线;

    (2)在Rt△BOD中,由勾股定理得,

    BD=2

    ∵sinD,⊙O半径为2,OD=4.

    解得AC=2

    ADBD+AB=4

    【点睛】

    本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键.

    3、【推论证明】见解析;【深入探究】;【拓展应用】

    【分析】

    推论证明:根据圆周角定理求出,即可证明出线段AB是⊙O的直径;

    深入探究:连接AB,首先根据∠ACB=90°得出AB是⊙O的直径,然后求出,然后根据同弧所对的圆周角相等得到,然后根据30°角直角三角形的性质求出BD的长度,最后根据勾股定理即可求出AD的长度;

    拓展应用:连接AE,作CFDEDE于点F,首先根据等边三角形三线合一的性质求出,然后证明出AECD四点共圆,然后根据同弧或等弧所对的圆周角相等求出,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.

    【详解】

    解:推论证明:∵

    ABO三点共线,

    又∵点O是圆心,

    AB是⊙O的直径;

    深入探究:如图所示,连接AB

    ∵∠ACB=90°

    AB是⊙O的直径

    ∵∠ACD=60°

    ∴在中,

    拓展应用:如图所示,连接AE,作CFDEDE于点F

    ∵△ABC是等边三角形,点EBC的中点

    又∵以AC为底边在三角形ABC外作等腰直角三角形ACD

    ∴点AECD四点都在以AC为直径的圆上,

    CFDE

    是等腰直角三角形

    ,解得:

    ∴在中,

    【点睛】

    此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.

    4、

    (1)4

    (2)

    【分析】

    (1)由旋转知:AM=AC=1,BN=BC,将△ABC的周长转化为MN

    (2)由α+β=270°,得∠ACB=90°,利用勾股定理列方程即可.

    (1)

    解:由旋转知:AM=AC=1,BN=BC=3-x

    ∴△ABC的周长为:AC+AB+BC=MN=4;

    故答案为:4;

    (2)

    解:∵α+β=270°,

    ∴∠CAB+∠CBA=360°-270°=90°,

    ∴∠ACB=180°-(∠CAB+∠CBA

    =180°-90°

    =90°,

    AC2+BC2=AB2

    即12+(3-x2=x2

    解得

    【点睛】

    本题主要考查了旋转的性质,勾股定理等知识,证明∠ACB=90°是解题的关键.

    5、

    (1)45°

    (2)

    【分析】

    (1)连接OC,根据切线的性质得到OCCD,根据圆周角定理得到∠DOC=2∠CAD,进而证明∠D=∠DOC,根据等腰直角三角形的性质求出∠D的度数;

    (2)根据等腰三角形的性质求出OC,根据弧长公式计算即可.

    (1)

    连接

    ,即

    是⊙的切线,

    ,即

    (2)

    的长

    【点睛】

    本题考查的是切线的性质、圆周角定理、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.

     

    相关试卷

    沪科版九年级下册第24章 圆综合与测试当堂检测题:

    这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共39页。

    初中沪科版第24章 圆综合与测试巩固练习:

    这是一份初中沪科版第24章 圆综合与测试巩固练习,共31页。试卷主要包含了如图,是的直径,,下列判断正确的个数有等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试当堂检测题:

    这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共24页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map