终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    难点详解沪科版九年级数学下册第24章圆专题攻克试卷(精选)

    立即下载
    加入资料篮
    难点详解沪科版九年级数学下册第24章圆专题攻克试卷(精选)第1页
    难点详解沪科版九年级数学下册第24章圆专题攻克试卷(精选)第2页
    难点详解沪科版九年级数学下册第24章圆专题攻克试卷(精选)第3页
    还剩36页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试当堂检测题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共39页。
    沪科版九年级数学下册第24章圆专题攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )
    A.不变 B.面积扩大为原来的3倍
    C.面积扩大为原来的9倍 D.面积缩小为原来的
    2、如图,AB,BC,CD分别与⊙O相切于E、F、G三点,且ABCD,BO=3,CO=4,则OF的长为(  )

    A.5 B. C. D.
    3、如图,在Rt中,.以点为圆心,长为半径的圆交于点,则的长是( )

    A.1 B. C. D.2
    4、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.
    A.3π B.6π C.12π D.18π
    5、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )

    A.相交 B.相切
    C.相离 D.不确定
    6、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是( )
    A.60 B.90 C.120 D.180
    7、下列图形中,既是中心对称图形也是轴对称图形的是( )
    A. B. C. D.
    8、如图,PA,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为( )

    A.70° B.50° C.20° D.40°
    9、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )

    A.3 B.4 C.5 D.6
    10、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )

    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)
    ①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.

    2、如图,在中,,,.绕点B顺时针方向旋转45°得到,点A经过的路径为弧,点C经过的路径为弧,则图中阴影部分的面积为______.(结果保留)

    3、如图,已知,在中,,.将绕点A逆时针旋转一个角至位置,连接BD,CE交于点F.
    (I)求证:;
    (2)若四边形ABFE为菱形,求的值;
    (3)在(2)的条件下,若,直接写出CF的值.

    4、点(2,-3)关于原点的对称点的坐标为_____.
    5、斛是中国古代的一种量器.据《汉书 .律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,
    问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.

    三、解答题(5小题,每小题10分,共计50分)
    1、在平面直角坐标系xOy中,旋转角满足,对图形M与图形N给出如下定义:将图形M绕原点逆时针旋转得到图形.P为图形上任意一点,Q为图形N上的任意一点,称PQ长度的最小值为图形M与图形N的“转后距”.已知点,点,点.
    (1)当时,记线段OA为图形M.
    ①画出图形;
    ②若点C为图形N,则“转后距”为______;
    ③若线段AC为图形N,求“转后距”;

    (2)已知点,点,记线段AB为图形M,线段PQ为图形N,对任意旋转角,“转后距”大于1,直接写出t的取值范围.
    2、如图,在平面直角坐标系中,有抛物线,已知OA =OC =3OB,动点P在过A,B,C三点的抛物线上.
    (1)求抛物线的解析式;
    (2)求过A,B,C三点的圆的半径;
    (3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;

    3、如图,已知为的直径,切于点C,交的延长线于点D,且.

    (1)求的大小;
    (2)若,求的长.
    4、如图,抛物线(a为常数,)与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,且OB=OC.

    (1)求a的值;
    (2)点D是该抛物线的顶点,点P(m,n)是第三象限内抛物线上的一个点,分别连接BD、BC、CD、BP,当∠PBA=∠CBD时,求m的值;
    (3)点K为坐标平面内一点,DK=2,点M为线段BK的中点,连接AM,当AM最大时,求点K的坐标.
    5、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别交于B、C两点,点B的坐标为,点D在上,且,求OA的半径和圆心A的坐标.

    元元的做法如下,请你帮忙补全解题过程:
    解:如图2,连接BC.作AELOB于E、AF⊥OC于F.
    ∴、(依据是 ① )
    ∵,
    ∴(依据是 ② ).
    ∵,.
    ∴BC是的直径(依据是 ③ ).

    ∵,
    ∴A的坐标为( ④ )的半径为 ⑤

    -参考答案-
    一、单选题
    1、A
    【分析】
    设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.
    【详解】
    设原来扇形的半径为r,圆心角为n,
    ∴原来扇形的面积为,
    ∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的,
    ∴变化后的扇形的半径为3r,圆心角为,
    ∴变化后的扇形的面积为,
    ∴扇形的面积不变.
    故选:A.
    【点睛】
    本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.
    2、D
    【分析】
    连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.
    【详解】
    解:连接OF,OE,OG,

    ∵AB、BC、CD分别与相切,
    ∴,,,且,
    ∴OB平分,OC平分,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,

    ∴SΔOBC=12OB·OC=12BC·OF,
    ∴,
    故选:D.
    【点睛】
    题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
    3、B
    【分析】
    利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CE⊥AB于E,利用,求出BE,根据垂径定理求出BD即可得到答案.
    【详解】
    解: 在Rt中,,
    ∴BC=3,,
    连接CD,过点C作CE⊥AB于E,
    ∵,
    ∴,
    解得,
    ∵CB=CD,CE⊥AB,
    ∴,
    ∴,
    故选:B.

    【点睛】
    此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.
    4、B
    【分析】
    利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
    【详解】
    解:它的侧面展开图的面积=×2×2×3=6(cm2).
    故选:B.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
    5、B
    【分析】
    根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
    【详解】
    解:连接,

    ,点O为AB中点.

    CO为⊙C的半径,
    是的切线,
    ⊙C 与AB的位置关系是相切
    故选B
    【点睛】
    本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
    6、C
    【分析】
    根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.
    【详解】
    解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.
    故选C.
    【点睛】
    本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.
    7、A
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;
    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    C、是中心对称图形,不是轴对称图形,故此选项不符合题意;
    D、是中心对称图形,不是轴对称图形,故此选项不符合题意.
    故选:A.
    【点睛】
    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
    8、D
    【分析】
    首先连接OA,OB,由PA,PB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.
    【详解】
    解:连接OA,OB,

    ∵PA,PB为⊙O的切线,
    ∴∠OAP=∠OBP=90°,
    ∵∠ACB=70°,
    ∴∠AOB=2∠P=140°,
    ∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.
    故选:D.
    【点睛】
    此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.
    9、A
    【分析】
    先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
    【详解】
    由旋转的性质得:,

    是等边三角形,



    故选:A.
    【点睛】
    本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
    10、A
    【分析】
    如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.
    【详解】
    解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点,
    记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:

    四边形为正方形,则

    设 而AB=2,CD=3,EF=5,结合正方形的性质可得:




    又 而


    解得:

    故选A
    【点睛】
    本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.
    二、填空题
    1、①②④
    【分析】
    连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,,,可得,继而可得,,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.
    【详解】
    解:连接OM,

    ∵PE为的切线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,,
    ∴,
    即AM平分,故①正确;
    ∵AB为的直径,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴,故②正确;
    ∵,
    ∴,
    ∵,
    ∴,
    ∴的长为,故③错误;
    ∵,,,
    ∴,
    ∴,
    ∴,
    ∴,
    又∵,,,
    ∴,
    又∵,
    ∴,
    设,则,
    ∴,
    在中,,
    ∴,
    ∴,
    由①可得,

    故④正确,
    故答案为:①②④.
    【点睛】
    本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
    2、##
    【分析】
    设与AC相交于点D,过点D作,垂足为点E,根据勾股定理逆定理可得为直角三角形,根据三边关系可得,根据题意及等角对等边得出,在中,利用正弦函数可得,结合图形,利用扇形面积公式及三角形面积公式求解即可得.
    【详解】
    解:设与AC相交于点D,过点D作,垂足为点E,

    ∵,,,
    ∴,
    ∴为直角三角形,
    ∴,
    ∵绕点B顺时针方向旋转45°得到,
    ∴,
    ∴,
    ∴,
    在中,,
    ∴,
    ∴,
    ∴,




    故答案为:.
    【点睛】
    题目主要考查勾股定理逆定理,旋转的性质,等角对等边的性质,正切函数,扇形面积等,理解题意,结合图形,综合运用这些知识点是解题关键.
    3、(1)见解析;(2)120°;(3)
    【分析】
    (1)根据旋转的性质和全等三角形的判定解答即可;
    (2)根据等腰三角形的性质求得∠ABD=90°-,∠BAE=+30°,根据菱形的邻角互补求解即可;
    (3)连接AF,根据菱形的性质和全等三角形的性质可求得∠FAC=45°,∠FCA=30°,过F作FG⊥AC于G,设FG=x,根据等腰直角三角形的性质和含30°角的直角三角形的性质求解即可.
    【详解】
    解:(1)由旋转得:AB=AD,AC=AE,∠BAD=∠CAE=,
    ∵AB=AC,
    ∴AB=AC=AD=AE,
    在△ABD和△ACE中,

    ∴△ABD≌△ACE(SAS);
    (2)∵AB=AD,∠BAD=,∠BAC=30°,
    ∴∠ABD=(180°-∠BAD)÷2=(180°-)÷2=90°-,∠BAE=+30°,
    ∵四边形ABFE是菱形,
    ∴∠BAE+∠ABD=180°,即+30°+90°-=180°,
    解得:=120°;
    (3)连接AF,
    ∵四边形ABFE是菱形,∠BAE=+30°=150°,
    ∴∠BAF=∠BAE=75°,又∠BAC=30°,
    ∴∠FAC=75°-30°=45°,
    ∵△ABD≌△ACE,
    ∴∠FCA=∠ABD=90°-=30°,
    过F作FG⊥AC于G,设FG=x,
    在Rt△AGF中,∠FAG=45°,∠AGF=90°,
    ∴∠AFG=∠FAG=45°,
    ∴△AGF是等腰直角三角形,
    ∴AG=FG=x,
    在在Rt△AGF中,∠FCG=30°,∠FGC=90°,
    ∴CF=2FG=2x,,
    ∵AC=AB=2,又AG+CG=AC,
    ∴,
    解得:,
    ∴CF=2x= .

    【点睛】
    本题考查全等三角形的判定与性质、旋转的性质、菱形的性质、等腰三角形的判定与性质、含30°角的直角三角形的性质、三角形的内角和定理、解一元一次方程等知识,熟练掌握相关知识的联系与运用是解答的关键.
    4、 (-2,3)
    【分析】
    根据“关于原点对称的点的坐标关系,横坐标与纵坐标都互为相反数”,即可求解.
    【详解】
    点(2,-3)关于原点的对称点的坐标是(-2,3).
    故答案为: (-2,3).
    【点睛】
    本题主要考查点关于原点对称,解决本题的关键是要熟练掌握关于原点对称点的坐标的关系.
    5、
    【分析】
    如图,根据四边形CDEF为正方形,可得∠D=90°,CD=DE,从而得到CE是直径,∠ECD=45°,然后利用勾股定理,即可求解.
    【详解】
    解:如图,

    ∵四边形CDEF为正方形,
    ∴∠D=90°,CD=DE,
    ∴CE是直径,∠ECD=45°,
    根据题意得:AB=2.5, ,
    ∴ ,
    ∴ ,
    即此斛底面的正方形的边长为 尺.
    故答案为:
    【点睛】
    本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.
    三、解答题
    1、(1)①OA′,图形见详解;②2;③ “转后距”为;(2)t的取值范围为t<-5或0<t<2或.
    【分析】
    (1)①当时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形即OA′.
    ②∵点C为图形N,求出OC=2最短距离;
    ③过点O作OF⊥AC于F,先证△OAC为等边三角形,OF⊥AC,根据勾股定理求出OF=即可;
    (2)点,点,可求tan∠OPQ=,得出当点P在x轴负半轴时,∠OPQ=120°,当点P在x轴正半轴时,∠OPQ=60°,得出∠CAB=∠ABC=30°,分三种情况,当°,当点P在点B右边,PB=t-4,BD>1,列不等式,解得,当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,PB=2PE>2×1即4-t>2解得t<2,当t=0时,OA′=2,A′Q=2-1=1,t>0,当点P在B′左边,PB′>1,OB′=OB=4,t<-5即可.
    【详解】
    解:(1)①当时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形即OA′;
    ②∵点C为图形N,OC=2为图形M与图形N的“转后距”,
    ∴“转后距”为2,
    故答案为2;
    ③线段AC为图形N,
    过点O作OF⊥AC于F,
    根据勾股定理OA=,AC=,
    ∴OA=AC=OC=2,
    ∴△OAC为等边三角形,
    ∵OF⊥AC,
    ∴AF=CF=1,
    ∴OF=,
    ∴“转后距”为;

    (2)∵点,点,
    ∴tan∠OPQ=,
    ∴当点P在x轴负半轴时,∠OPQ=120°,当点P在x轴正半轴时,∠OPQ=60°,
    ∵CB=4-2=2=AC,∠ACO=60°,
    ∴∠CAB=∠ABC=30°,
    分三种情况,
    当°,当点P在点B右边,PB=t-4,BD>1,
    ∴BPsin60>1,
    ∴,
    解得;

    当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,
    ∴∠OEB=180°-∠EPB-∠ABC=180°-60°-30°=90°,
    ∵PB=4-t,
    ∴PB=2PE>2×1即4-t>2,
    解得t<2,
    当t=0时,点P与原点O重合,OA′=2,A′Q=2-1=1,
    ∴t>0,
    ∴0<t<2;

    当点P在B′左边,PB′>1,OB′=OB=4,
    ∴t<-5;

    综合t的取值范围为t<-5或0<t<2或.
    【点睛】
    本题考查图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理,掌握图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理是解题关键.
    2、(1)y=-x2+2x+3;(2);(3)点P(1,4)或(-2,-5).
    【分析】
    (1)3=OC=OA=3OB,故点A、B、C的坐标分别为:(0,3)、(-1,0)、(3,0),即可求解;
    (2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),即可求解;
    (3)分两种情况讨论,利用等腰直角三角形的性质,即可求解.
    【详解】
    解:(1)令x=0,则y=3,
    则点A的坐标为(3,0),
    根据题意得:OC=3=OA=3OB,
    故点B、C的坐标分别为:(-1,0)、(3,0),
    则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3),
    把(3,0)代入得-3a=3,
    解得:a=-1,
    故抛物线的表达式为:y=-x2+2x+3;
    (2)圆的圆心在BC的中垂线上,故设圆心R(1,m),
    则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),
    则圆的半径为:;
    (3)过点A、C分别作直线AC的垂线,交抛物线分别为P、P1,

    设点P(x,-x2+2x+3),过点P作PQ⊥轴于点Q,
    ∵OA =OC,∠PAC=90°,
    ∴∠ACO=∠OAC=45°,
    ∵∠PAC=90°,
    ∴∠PAQ=45°,
    ∴△PAQ 是等腰直角三角形,
    ∴PQ=AQ=x,
    ∴AQ+AO=x+3=-x2+2x+3,
    解得:(舍去),
    ∴点P(1,4);
    设点P1(m,-m2+2m+3),过点P1作P1D⊥轴于点D,
    同理得△P1CD是等腰直角三角形,且点P1在第三象限,即m

    相关试卷

    沪科版第24章 圆综合与测试同步测试题:

    这是一份沪科版第24章 圆综合与测试同步测试题,共29页。试卷主要包含了如图,是的直径,,将一把直尺等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试同步练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步练习题,共33页。试卷主要包含了下列判断正确的个数有,下列说法正确的个数有,下列语句判断正确的是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试综合训练题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试综合训练题,共34页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map