2021学年第24章 圆综合与测试当堂达标检测题
展开
这是一份2021学年第24章 圆综合与测试当堂达标检测题,共33页。
沪科版九年级数学下册第24章圆同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列汽车标志中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )
A.45° B.60° C.90° D.120°
3、下列叙述正确的有( )个.
(1)随着的增大而增大;
(2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;
(3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;
(4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;
(5)以为三边长度的三角形,不是直角三角形.
A.0 B.1 C.2 D.3
4、下列各点中,关于原点对称的两个点是( )
A.(﹣5,0)与(0,5) B.(0,2)与(2,0)
C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)
5、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为( )
A. B. C. D.8
6、下列四个图案中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
7、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是( )
A.60 B.90 C.120 D.180
8、如图,四边形内接于,如果它的一个外角,那么的度数为( )
A. B. C. D.
9、平面直角坐标系中点关于原点对称的点的坐标是( )
A. B. C. D.
10、下列判断正确的个数有( )
①直径是圆中最大的弦;
②长度相等的两条弧一定是等弧;
③半径相等的两个圆是等圆;
④弧分优弧和劣弧;
⑤同一条弦所对的两条弧一定是等弧.
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.
2、如图,正方形ABCD的边长为1,⊙O经过点C,CM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边AB,AD于点G,H.BD与CG,CH分别交于点E,F,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:
①HD=2BG;②∠GCH=45°;③H,F,E,G四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有 _____(填写所有正确结论的序号).
3、如图,已知,外心为,,,分别以,为腰向形外作等腰直角三角形与,连接,交于点,则的最小值是______.
4、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为______.(结果保留π)
5、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、在中,,,过点A作BC的垂线AD,垂足为D,E为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90°得到线段AF,连接BF,与直线AD交于点G.
(1)如图,当点E在线段CD上时,
①依题意补全图形,并直接写出BC与CF的位置关系;
②求证:点G为BF的中点.
(2)直接写出AE,BE,AG之间的数量关系.
2、如图,AB为⊙O的直径,点C在⊙O上,点P在BA的延长线上,连接BC,PC.若AB = 6,的长为π,BC = PC.求证:直线PC与⊙O相切.
3、如图,△ABC内接于⊙O,D是⊙O的直径AB的延长线上一点,∠DCB=∠OAC.过圆心O作BC的平行线交DC的延长线于点E.
(1)求证:CD是⊙O的切线;
(2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.
4、解题与遐想.
如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=4,BD=5.求Rt△ABC的面积.
王小明:这道题算出来面积刚好是20,太凑巧了吧.刚好是4×5=20,有种白算的感觉…
赵丽华:我把4和5换成m、n再算一遍,△ABC的面积总是m•n!确实非常神奇了…
数学刘老师:大家想一想,既然结果如此简单到极致,不计算能不能得到呢?比如,拼图?
霍佳:刘老师,我在想另一个东西,这个图能不能尺规画出来啊感觉图都定了.我怎么想不出来呢?
计算验证
(1)通过计算求出Rt△ABC的面积.
拼图演绎
(2)将Rt△ABC分割放入矩形中(左图),通过拼图能直接“看”出“20”请在图中画出拼图后的4个直角三角形甲、乙、丙、丁的位置,作必要标注并简要说明.
尺规作图
(3)尺规作图:如图,点D在线段AB上,以AB为斜边求作一个Rt△ABC,使它的内切圆与斜边AB相切于点D.(保留作图的痕迹,写出必要的文字说明)
5、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF.
(1)若,求的度数;
(2)若,求的大小;
(3)猜想CF,BF,AF之间的数量关系,并证明.
-参考答案-
一、单选题
1、C
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;
B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
C、是轴对称图形,是中心对称图形,故此选项符合题意;
D、不是轴对称图形,是中心对称图形,故此选项不符合题意;
故选:C.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
2、B
【分析】
设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.
【详解】
解:设∠ADC=α,∠ABC=β;
∵四边形ABCO是菱形,
∴∠ABC=∠AOC;
∠ADC=β;
四边形为圆的内接四边形,
α+β=180°,
∴ ,
解得:β=120°,α=60°,则∠ADC=60°,
故选:B.
【点睛】
该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.
3、D
【分析】
根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解.
【详解】
当或者时,随着的增大而增大,故(1)不正确;
如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;,故(2)正确;
∵圆的直径所对的圆周角为直角
∴斜边为的直角三角形顶点A的轨迹是以中点为圆心,长为直径的圆,故(3)正确;
三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;
∵
∴
∴以为三边长度的三角形,是直角三角形,故(5)错误;
故选:D.
【点睛】
本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解.
4、D
【分析】
根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
【详解】
解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;
B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;
C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;
D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;
故选:D.
【点睛】
本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
5、A
【分析】
过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.
【详解】
解:如图,过点作于点,连接,
AB是的直径,,,
,
在中,
故选A
【点睛】
本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.
6、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;
B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
C、是轴对称图形,是中心对称图形,故此选项不符合题意;
D、不是轴对称图形,是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
7、C
【分析】
根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.
【详解】
解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.
故选C.
【点睛】
本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.
8、D
【分析】
由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD=2∠A=128°.
【详解】
∵
∴
∵四边形内接于
∴
又∵
∴.
故选:D.
【点睛】
本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.
9、B
【分析】
根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
【详解】
解:平面直角坐标系中点关于原点对称的点的坐标是
故选B
【点睛】
本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.
10、B
【详解】
①直径是圆中最大的弦;故①正确,
②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确
③半径相等的两个圆是等圆;故③正确
④弧分优弧、劣弧和半圆,故④不正确
⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.
综上所述,正确的有①③
故选B
【点睛】
本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.
二、填空题
1、35°
【分析】
根据旋转的性质可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
解:∵△COD是△AOB绕点O顺时针旋转30°后得到的图形,
∴∠AOD=∠BOC=30°,AO=DO,
∵∠AOC=100°,
∴∠BOD=100°−30°×2=40°,
∠ADO=∠A=(180°−∠AOD)=(180°−30°)=75°,
由三角形的外角性质得,∠B=∠ADO−∠BOD=75°−40°=35°.
故答案为:35°.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
2、②③④
【分析】
根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PC≥AC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.
【详解】
∵GH是⊙O的切线,M为切点,且CM是⊙O的直径,
∴∠CMH=90°,
∵四边形ABCD是正方形,
∴∠CMH=∠CDH=90°,
∵CM=CD,CH=CH,
∴△CMH≌△CDH,
∴HD=HM,∠HCM=∠HCD,
同理可证,∴GM=GB,∠GCB=∠GCM,
∴GB+DH=GH,无法确定HD=2BG,
故①错误;
∵∠HCM+∠HCD+∠GCB+∠GCM=90°,
∴2∠HCM+2∠GCM=90°,
∴∠HCM+∠GCM=45°,
即∠GCH=45°,
故②正确;
∵△CMH≌△CDH,BD是正方形的对角线,
∴∠GHF=∠DHF,∠GCH=∠HDF=45°,
∴∠GHF+∠GEF=∠DHF +∠GCH+∠EFC
=∠DHF +∠HDF+∠HFD
=180°,
根据对角互补的四边形内接于圆,
∴H,F,E,G四点在同一个圆上,
故③正确;
∵正方形ABCD的边长为1,
∴
=1
=,∠GAH=90°,AC=
取GH的中点P,连接PA,
∴GH=2PA,
∴=,
∴当PA取最小值时,有最大值,
连接PC,AC,
则PA+PC≥AC,
∴PA≥AC- PC,
∴当PC最大时,PA最小,
∵直径是圆中最大的弦,
∴PC=1时,PA最小,
∴当A,P,C三点共线时,且PC最大时,PA最小,
∴PA=-1,
∴最大值为:1-(-1)=2-,
∴四边形CGAH面积的最大值为2,
∴④正确;
故答案为: ②③④.
【点睛】
本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.
3、
【分析】
由与是等腰直角三角形,得到,,根据全等三角形的性质得到,求得在以为直径的圆上,由的外心为,,得到,如图,当时,的值最小,解直角三角形即可得到结论.
【详解】
解:与是等腰直角三角形,
,
,
在与中,
,
≌,
,
,
,
在以为直径的圆上,
的外心为,,
,
如图,当时,的值最小,
,
,
,,
.
则的最小值是,
故答案为:.
【点睛】
本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.
4、
【分析】
先求出A、B、C坐标,再证明三角形BOC是等边三角形,最后根据扇形面积公式计算即可.
【详解】
过C作CD⊥OA于D
∵一次函数的图象与x轴交于点A,与y轴交于点B,
∴当时,,B点坐标为(0,1)
当时,,A点坐标为
∴
∵作的外接圆,
∴线段AB中点C的坐标为,
∴三角形BOC是等边三角形
∴
∵C的坐标为
∴
∴
故答案为:
【点睛】
本题主要考查了一次函数的综合运用,求扇形面积.用已知点的坐标表示相应的线段是解题的关键.
5、
【分析】
连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,,,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.
【详解】
解:如图所示,连接OB,交AC于点D,
∵四边形OABC为平行四边形,,
∴四边形OABC为菱形,
∴,,,
∵,
∴为等边三角形,
∴,
∴,
在中,设,则,
∴,
即,
解得:或(舍去),
∴的长为:,
故答案为:.
【点睛】
题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.
三、解答题
1、(1)①BC⊥CF;证明见详解;②见详解;(2)2AE2=4AG2+BE2.证明见详解.
【分析】
(1)①如图所示,BC⊥CF.根据将线段AE逆时针旋转90°得到线段AF,得出AE=AF,∠EAF=90°,可证△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;
②根据AD⊥BC,BC⊥CF.可得AD∥CF,可证△BDG∽△BCF,可得,得出即可;
(2)2AE2=4AG2+BE2,延长BA交CF延长线于H,根据等腰三角形性质可得AD平分∠BAC,可得∠BAD=∠CAD=,可证△BAG∽△BHF,得出HF=2AG,再证△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可.
【详解】
解:(1)①如图所示,BC⊥CF.
∵将线段AE逆时针旋转90°得到线段AF,
∴AE=AF,∠EAF=90°,
∴∠EAC+∠CAF=90°,
∵,,
∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
,
∴△BAE≌△CAF(SAS),
∴∠ABE=∠ACF=45°,
∴∠ECF=∠ACB+∠ACF=45°+45°=90°,
∴BC⊥CF;
②∵AD⊥BC,BC⊥CF.
∴AD∥CF,
∴∠BDG=∠BCF=90°,∠BGD=∠BFC,
∴△BDG∽△BCF,
∴,
∵,AD⊥BC,
∴BD=DC=,
∴,
∴,
∴,
∴BG=GF;
(2)2AE2=4AG2+BE2.延长BA交CF延长线于H,
∵AD⊥BC,AB=AC,
∴AD平分∠BAC,
∴∠BAD=∠CAD=,
∵BG=GF,AG∥HF,
∴∠BAG=∠H=45°,∠AGB=∠HFB,
∴△BAG∽△BHF,
∴,
∴HF=2AG,
∵∠ACE=45°,
∴∠ACE =∠H,
∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,
∴∠EAC=∠FAH,
在△AEC和△AFH中,
,
∴△AEC≌△AFH(AAS),
∴EC=FH=2AG,
在Rt△AEF中,根据勾股定理,
在Rt△ECF中,即.
【点睛】
本题考查图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理,掌握图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理是解题关键.
2、见详解
【分析】
连接OC,由题意易得∠AOC=60°,则有∠B=∠OCB=30°,然后可得∠P=∠B=30°,进而可得∠OCP=90°,最后问题可求证.
【详解】
证明:连接OC,如图所示:
∵的长为π,AB=6,
∴OC=OA=3,,
∴,
∵OB=OC,
∴∠B=∠OCB=30°,
∵BC=PC,
∴∠P=∠B=30°,
∴∠POC+∠P=90°,即∠OCP=90°,
∵OC是圆O的半径,
∴直线PC与⊙O相切.
【点睛】
本题主要考查切线的判定定理,熟练掌握切线的判定定理是解题的关键.
3、
(1)见解析
(2)3,2
【分析】
(1)由等腰三角形的性质与已知条件得出,∠OCA=∠DCB,由圆周角定理可得∠ACB=90°,进而得到∠OCD=90°,即可得出结论;
(2)根据平行线分线段成比例定理得到,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,在Rt△OCD中,根据勾股定理求出x=1,即⊙O的半径为3,由平行线的性质得到∠OCB=∠EOC,在Rt△OCE中,可求得tan∠EOC=2,即tan∠OCB=2.
(1)
证明:∵OA=OC,
∴∠OAC=∠OCA,
∵∠DCB=∠OAC,
∴∠OCA=∠DCB,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠OCA+∠OCB=90°,
∴∠DCB+∠OCB=90°,
即∠OCD=90°,
∴OC⊥DC,
∵OC是⊙O的半径,
∴CD是⊙O的切线;
(2)
∵OE∥BC,
∴,
∵CD=4,CE=6,
∴,
设BD=2x,则OB=OC=3x,OD=OB+BD=5x,
∵OC⊥DC,
∴△OCD是直角三角形,
在Rt△OCD中,OC2+CD2=OD2,
∴(3x)2+42=(5x)2,
解得,x=1,
∴OC=3x=3,即⊙O的半径为3,
∵BC∥OE,
∴∠OCB=∠EOC,
在Rt△OCE中,tan∠EOC=,
∴tan∠OCB=tan∠EOC=2.
【点睛】
本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键.
4、(1)S△ABC=20;(2)见解析;(3)见解析.
【分析】
(1)设⊙O的半径为r,由切线长定理得,AE=AD=4,BF=BD=5,CE=CF=r,由勾股定理得,(r+4)2+(r+5)2=92,进而求得结果;
(2)根据切线长定理可证明甲和乙两个三角形全等,丙丁两个三角形全等,故将甲乙图形放在OE为边的上方,将丙丁以OP为边放在右侧,围成矩形的边长是4和5;
(3)可先计算∠AFB=135°,根据“定弦对定角”作F点的轨迹,根据切线性质,过点F作AB的垂线,再根据直径所对的圆周角是90°,确定点C.
【详解】
解:(1)如图1,
设⊙O的半径为r,
连接OE,OF,
∵⊙O内切于△ABC,
∴OE⊥AC,OF⊥BC,AE=AD=4,BF=BD=5,
∴∠OEC=∠OFC=∠C=90°,
∴四边形ECFO是矩形,
∴CF=OE=r,CE=OF=r,
∴AC=4+r,BC=5+r,
在Rt△ABC中,由勾股定理得,
(r+4)2+(r+5)2=92,
∴r2+9r=20,
∴S△ABC=
=
=
=
=20;
(2)
如图2,
(3)设△ABC的内切圆记作⊙F,
∴AF和BF平分∠BAC和∠ABC,FD⊥AB,
∴∠BAF=∠CAB,∠ABF=,
∴∠BAF+∠ABF=(∠BAC+∠ABC)==45°,
∴∠AFB=135°,
可以按以下步骤作图(如图3):
①以BA为直径作圆,作AB的垂直平分线交圆于点E,
②以E为圆心,AE为半径作圆,
③过点D作AB的垂线,交圆于F,
④连接EF并延长交圆于C,连接AC,BC,
则△ABC就是求作的三角形.
【点睛】
本题考查三角形的内切圆性质、切线长定理、勾股定理、矩形的判定与性质、尺规作图-作垂线,熟练掌握相关知识的联系与运用是解答的关键.
5、(1)20°;(2);(3)AF= CF+BF,理由见解析
【分析】
(1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,,∠CBF=∠ABE-∠ABC=20°;
(2)同(1)求解即可;
(3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.
【详解】
解:(1)∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠ABC=60°,
由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,
∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,
∴,
∴∠CBF=∠ABE-∠ABC=20°;
(2)∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠ABC=60°,
由折叠的性质可知,,AC=AE,
∴ ,AB=AE,
∴,
∴;
(3)AF= CF+BF,理由如下:
如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,
∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG
在△AEF和△ACF中,
,
∴△AEF≌△ACF(SAS),
∴∠AFE=∠AFC,
∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,
∴∠BFD=∠ACD=60°,
∴∠AFE=∠AFC=60°,
∴∠BFC=120°,
∴∠BAC+∠BFC=180°,
∴∠ABF+∠ACF=180°,
∴∠ACG+∠ACF=180°,
∴F、C、G三点共线,
∴△AFG是等边三角形,
∴AF=GF=CF+CG=CF+BF.
【点睛】
本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.
相关试卷
这是一份数学沪科版第24章 圆综合与测试同步达标检测题,共35页。试卷主要包含了如图,一个宽为2厘米的刻度尺,等边三角形,下列叙述正确的有个.等内容,欢迎下载使用。
这是一份数学九年级下册第24章 圆综合与测试同步测试题,共30页。
这是一份沪科版九年级下册第24章 圆综合与测试单元测试复习练习题,共29页。