![2021-2022学年基础强化沪科版九年级数学下册第24章圆专题测评试题(含答案及详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12683099/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化沪科版九年级数学下册第24章圆专题测评试题(含答案及详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12683099/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化沪科版九年级数学下册第24章圆专题测评试题(含答案及详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12683099/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题
展开
这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题,共31页。
沪科版九年级数学下册第24章圆专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )
A.19° B.38° C.52° D.76°
2、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
3、下列判断正确的个数有( )
①直径是圆中最大的弦;
②长度相等的两条弧一定是等弧;
③半径相等的两个圆是等圆;
④弧分优弧和劣弧;
⑤同一条弦所对的两条弧一定是等弧.
A.1个 B.2个 C.3个 D.4个
4、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
A.OP>4 B.0≤OP2 D.0≤OP4,
故选:A.
【点睛】
此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
5、B
【分析】
根据中心对称图形与轴对称图形的概念逐项分析
【详解】
解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;
B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;
C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;
D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;
故选B
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.
6、C
【分析】
先设半径为r,再根据弧长公式建立方程,解出r即可
【详解】
设半径为r,
则周长为2πr,
120°所对应的弧长为
解得r=3
故选C
【点睛】
本题考查弧长计算,牢记弧长公式是本题关键.
7、B
【分析】
设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.
【详解】
解:设∠ADC=α,∠ABC=β;
∵四边形ABCO是菱形,
∴∠ABC=∠AOC;
∠ADC=β;
四边形为圆的内接四边形,
α+β=180°,
∴ ,
解得:β=120°,α=60°,则∠ADC=60°,
故选:B.
【点睛】
该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.
8、A
【分析】
连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
【详解】
解:连接,
,
,
与圆相切于点,
,
,
故选:A.
【点睛】
本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
9、B
【分析】
阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积.
【详解】
解:由图可知:阴影部分的面积=扇形扇形,
由旋转性质可知:,,
,,
在中,,,,
,,
有勾股定理可知:,
阴影部分的面积=扇形扇形
.
故选:B.
【点睛】
本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.
10、C
【详解】
解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;
选项B不是轴对称图形,是中心对称图形,故B不符合题意;
选项C既是轴对称图形,也是中心对称图形,故C符合题意;
选项D是轴对称图形,不是中心对称图形,故D不符合题意;
故选C
【点睛】
本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.
二、填空题
1、②③④
【分析】
根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PC≥AC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.
【详解】
∵GH是⊙O的切线,M为切点,且CM是⊙O的直径,
∴∠CMH=90°,
∵四边形ABCD是正方形,
∴∠CMH=∠CDH=90°,
∵CM=CD,CH=CH,
∴△CMH≌△CDH,
∴HD=HM,∠HCM=∠HCD,
同理可证,∴GM=GB,∠GCB=∠GCM,
∴GB+DH=GH,无法确定HD=2BG,
故①错误;
∵∠HCM+∠HCD+∠GCB+∠GCM=90°,
∴2∠HCM+2∠GCM=90°,
∴∠HCM+∠GCM=45°,
即∠GCH=45°,
故②正确;
∵△CMH≌△CDH,BD是正方形的对角线,
∴∠GHF=∠DHF,∠GCH=∠HDF=45°,
∴∠GHF+∠GEF=∠DHF +∠GCH+∠EFC
=∠DHF +∠HDF+∠HFD
=180°,
根据对角互补的四边形内接于圆,
∴H,F,E,G四点在同一个圆上,
故③正确;
∵正方形ABCD的边长为1,
∴
=1
=,∠GAH=90°,AC=
取GH的中点P,连接PA,
∴GH=2PA,
∴=,
∴当PA取最小值时,有最大值,
连接PC,AC,
则PA+PC≥AC,
∴PA≥AC- PC,
∴当PC最大时,PA最小,
∵直径是圆中最大的弦,
∴PC=1时,PA最小,
∴当A,P,C三点共线时,且PC最大时,PA最小,
∴PA=-1,
∴最大值为:1-(-1)=2-,
∴四边形CGAH面积的最大值为2,
∴④正确;
故答案为: ②③④.
【点睛】
本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.
2、
【分析】
过点作轴,交于点,根据中位线定理可得,设点到轴的距离为G,则△AOE的边上的高,作的外接圆,则当点位于图中处时,最大,根据三角形面积公式计算即可.
【详解】
解:过点作轴,交于点,
∵A(-1,0),B(2,0),
∴,,
∵D为线段BC的中点,轴,
∴,
∴,
设点到轴的距离为,
则△AOE的边上的高,
作的外接圆,
则当点位于图中处时,最大,
因为,
∴,
∴为等边三角形,
∴,
∴,
∴,
∴,
∴,
故答案为:.
【点睛】
本题考查了三角形中位线定理,圆周角定理,圆周角和圆心角的关系,等边三角形的判定与性质,解直角三角形等知识点,根据题意得出点的位置是解本题的关键.
3、 4
【分析】
设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.
【详解】
解:设一直角边长为x,另一直角边长为(6-x),
∵三角形是直角三角形,
∴根据勾股定理,
整理得:,
解得,
这个直角三角形的斜边长为外接圆的直径,
∴外接圆的半径为cm,
三角形面积为.
故答案为;.
【点睛】
本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.
4、3
【分析】
过A作AE⊥BC于E,过C作CF⊥AD于F,根据圆周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明△ABE∽△CDF,由相似三角形的性质和勾股定理分别求得AE、DF、CF, AF即可求解.
【详解】
解:过A作AE⊥BC于E,过C作CF⊥AD于F,则∠AEB=∠CFD=90°,
∵=, AB=10,
∴∠ACB=∠B=∠D,AB=AC=10,
∵AE⊥BC,BC=12,
∴BE=CE=6,
∴,
∵∠B=∠D,∠AEB=∠CFD=90°,
∴△ABE∽△CDF,
∴,
∵AB=10,CD=5,BE=6,AE=8,
∴,
解得:DF=3,CF=4,
在Rt△AFC中,∠AFC=90°,AC=10,CF=4,
则,
∴AD=DF+AF=3+2,
故答案为:3+2.
【点睛】
本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键.
5、60
【分析】
在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圆周角定理即可解决问题.
【详解】
解:如图作OE⊥BC于E.
∵OE⊥BC,
∴BE=EC=,∠BOE=∠COE,
∴OE=1,
∴OB=2OE,
∴∠OBE=30°,
∴∠BOE=∠COE=60°,
∴∠BOC=120°,
∴∠BAC=60°,
故答案为:60.
【点睛】
本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
三、解答题
1、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)因为AB=5,作腰为5的等腰三角形即可(答案不唯一);
(2)作边长为2,高为4的平行四边形即可;
(3)根据(1)的结论,作BG边的中线,即可得解.
【详解】
解:(1)如图①中,△ABC即为所求作(答案不唯一);
(2)如图②中,平行四边形ABCD即为所求作;
(3)如图③中,△ABC即为所求作(答案不唯一);
∵AB=AG,BC=CG,
∴AC⊥BG,
∵△ABG的面积为,
∴△ABC的面积为5,且∠ACB=90°.
【点睛】
本题考查作图-应用与设计,等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
2、
(1)证明见解析
(2)
【分析】
(1)连接OA,根据已知条件证明OA⊥AE即可解决问题;
(2)取CD中点F,连接OF,根据垂径定理可得OF⊥CD,所以四边形AEFO是矩形,利用勾股定理即可求出结果.
(1)
证明:如图,连接OA,
∵AE⊥CD,
∴∠DAE+∠ADE=90°.
∵DA平分∠BDE,
∴∠ADE=∠ADO,
又∵OA=OD,
∴∠OAD=∠ADO,
∴∠DAE+∠OAD=90°,
∴OA⊥AE,
∴AE是⊙O切线;
(2)
解:如图,取CD中点F,连接OF,
∴OF⊥CD于点F.
∴四边形AEFO是矩形,
∵CD=6,
∴DF=FC=3.
在Rt△OFD中,OF=AE=4,
∴,
在Rt△AED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,
∴,
∴AD的长是.
【点睛】
本题考查了切线的判定与性质,垂径定理,圆周角定理,勾股定理,解决本题的关键是掌握切线的判定与性质.
3、(1)①∠CAE=∠CBD,理由见解析;②证明见解析;(2)AE=2CF仍然成立,理由见解析
【分析】
(1)①只需要证明△CAE≌△CBD即可得到∠CAE=∠CBD;
②先证明∠CAH=∠BCF,然后推出∠BDC=∠FCD,∠CAE=∠CBD=∠BCF,得到CF=DF,CF=BF,则BD=2CF,再由△CAE≌△CBD,即可得到AE=2BD=2CF;
(2)如图所示延长DC到G使得,DC=CG,连接BG,只需要证明△ACE≌△BCG得到AE=BG,再由CF是△BDG的中位线,得到BG=2CF,即可证明AE=2CF.
【详解】
解:(1)①∠CAE=∠CBD,理由如下:
在△CAE和△ CBD中,
,
∴△CAE≌△CBD(SAS),
∴∠CAE=∠CBD;
②∵CF⊥AE,
∴∠AHC=∠ACB=90°,
∴∠CAH+∠ACH=∠ACH+∠BCF=90°,
∴∠CAH=∠BCF,
∵∠DCF+∠BCF=90°,∠CDB+∠CBD=90°,∠CAE=∠CBD,
∴∠BDC=∠FCD,∠CAE=∠CBD=∠BCF,
∴CF=DF,CF=BF,
∴BD=2CF,
又∵△CAE≌△CBD,
∴AE=2BD=2CF;
(2)AE=2CF仍然成立,理由如下:
如图所示延长DC到G使得,DC=CG,连接BG,
由旋转的性质可得,∠DCE=∠ACB=90°,
∴∠ACD+∠BCD=∠BCE+∠BCD,∠ECG=90°,
∴∠ACD=∠BCE,
∴∠ACD+∠DCE=∠BCE+∠ECG,即∠ACE=∠BCG,
又∵CE=CD=CG,AC=BC,
∴△ACE≌△BCG(SAS),
∴AE=BG,
∵F是BD的中点,CD=CG,
∴CF是△BDG的中位线,
∴BG=2CF,
∴AE=2CF.
【点睛】
本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,旋转的性质,三角形中位线定理,熟知全等三角形的性质与判定条件是解题的关键.
4、(1)见解析;(2)
【分析】
(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;
(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.
【详解】
(1)如图,
∵DC⊥OA,
∴∠1+∠3=90°,
∵BD为切线,
∴OB⊥BD,
∴∠2+∠5=90°,
∵OA=OB,
∴∠1=∠2,
∵∠3=∠4,
∴∠4=∠5,
在△DEB中,∠4=∠5,
∴DE=DB.
(2)如图,作DF⊥AB于F,
连接OE,∵DB=DE,
∴EF=BE=3,
在Rt△DEF中,EF=3,DE=BD=5,
∴DF=
∴sin∠DEF== ,
∵∠AOE,,
∴∠AOE=∠DEF,
∴在Rt△AOE中,sin∠AOE= ,
∵AE=6,
∴AO=.
【点睛】
本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.
5、(1)A(-1,0),B(0,2);(2)点C的坐标(,);(3)①求点F的坐标(1,2);②点P的坐标(,)
【分析】
(1)令x=0,求得y值,得点B的坐标;令y=0,求得x的值,取较小的一个即求A点的坐标;
(2)设C的坐标为(x,-+x+2),根据AC=BC,得到,令t=-+x,解方程即可;
(3)①根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,根据B,E都在抛物线上,则B,E是对称点,从而确定点P在抛物线的对称轴上,点F在BE上,且BE∥x轴,点E(3,2),确定BE=3,根据旋转性质,得EF=BO=2,从而确定点F的坐标;
②根据BE=3,∠BPE=90°,PB=PE,确定P到BE的距离,即可写出点P的坐标.
【详解】
(1)令x=0,得y=2,
∴点B的坐标为B(0,2);
令y=0,得-+x+2=0,
解得
∵点A在x轴的负半轴;
∴A点的坐标(-1,0);
(2)设C的坐标为(x,-+x+2),
∵AC=BC,A(-1,0),B(0,2),
∴,
∵A(-1,0),B(0,2),
∴,
即,
设t=-+x,
∴,
∴,
∴,
∴,
整理,得,
解得
∵点C在y轴右侧的抛物线上,
∴,
此时y=,
∴点C的坐标(,);
(3)①如图,根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,
∵B,E都在抛物线上,
∴B,E是对称点,
∴点P在抛物线的对称轴上,点F在BE上,且BE∥x轴,
∵抛物线的对称轴为直线x=,B(0,2),
∴点E(3,2),BE=3,
∵EF=BO=2,
∴BF=1,
∴点F的坐标为(1,2);
②如图,设抛物线的对称轴与BE交于点M,交x轴与点N,
∵BE=3,
∴BM=,
∵∠BPE=90°,PB=PE,
∴PM=BM=,
∴PM=BM=,
∴PN=2-=,
∴点P的坐标为(,).
【点睛】
本题考查了抛物线与坐标轴的交点,旋转的性质,两点间的距离公式,一元二次方程的解法,换元法解方程,熟练掌握抛物线的对称性,灵活理解旋转的意义,熟练解一元二次方程是解题的关键.
相关试卷
这是一份初中沪科版第24章 圆综合与测试课时训练,共29页。试卷主要包含了如图,点A等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试综合训练题,共29页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。
这是一份数学沪科版第24章 圆综合与测试同步达标检测题,共35页。试卷主要包含了如图,一个宽为2厘米的刻度尺,等边三角形,下列叙述正确的有个.等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)