沪科版九年级下册第24章 圆综合与测试综合训练题
展开
这是一份沪科版九年级下册第24章 圆综合与测试综合训练题,共32页。
沪科版九年级数学下册第24章圆章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )
A.不变 B.面积扩大为原来的3倍
C.面积扩大为原来的9倍 D.面积缩小为原来的
2、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )
A. B.
C. D.
3、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )
A.50° B.70° C.110° D.120°
4、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
5、下列图案中既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
6、如图,,,,都是上的点,,垂足为,若,则的度数为( )
A. B. C. D.
7、在半径为6cm的圆中,的圆心角所对弧的弧长是( )
A.cm B.cm C.cm D.cm
8、如图,A,B,C是正方形网格中的三个格点,则是( )
A.优弧 B.劣弧 C.半圆 D.无法判断
9、若的圆心角所对的弧长是,则此弧所在圆的半径为( )
A.1 B.2 C.3 D.4
10、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为( )
A.64° B.52° C.42° D.36°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______.
2、数学兴趣活动课上,小方将等腰的底边BC与直线l重合,问:
(1)如图(1)已知,,点P在BC边所在的直线l上移动,小方发现AP的最小值是______;
(2)如图(2)在直角中,,,,点D是CB边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,线段CP的最小值是______.
3、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积.这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的.如果借用一个圆形纸片,我们就可以化圆为方,方法如下:
已知:⊙O(纸片),其半径为.
求作:一个正方形,使其面积等于⊙O的面积.
作法:①如图1,取⊙O的直径,作射线,过点作的垂线;
②如图2,以点为圆心,为半径画弧交直线于点;
③将纸片⊙O沿着直线向右无滑动地滚动半周,使点,分别落在对应的,处;
④取的中点,以点为圆心,为半径画半圆,交射线于点;
⑤以为边作正方形.
正方形即为所求.
根据上述作图步骤,完成下列填空:
(1)由①可知,直线为⊙O的切线,其依据是________________________________.
(2)由②③可知,,,则_____________,____________(用含的代数式表示).
(3)连接,在Rt中,根据,可计算得_________(用含的代数式表示).由此可得.
4、如图,已知扇形的圆心角为60°,半径为2,则图中弓形(阴影部分)的面积为______.
5、一个正多边形的中心角是,则这个正多边形的边数为________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知在中,,D、E是BC边上的点,将绕点A旋转,得到,连接.
(1)当时,时,求证:;
(2)当时,与有怎样的数量关系?请写出,并说明理由.
(3)在(2)的结论下,当,BD与DE满足怎样的数量关系时,是等腰直角三角形?(直接写出结论,不必证明)
2、将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,∠MPN的两边分别与正方形的边BC、DC或其所在直线相交于点E、F,连接EF.
(1)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC相交时,如图1所示,请直接写出线段BE、DF、EF满足的数量关系;
(2)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC的延长线相交时,如图2所示,请直接写出线段BE、DF、EF满足的数量关系;
(3)若正方形的边长为4,在三角板旋转过程中,当∠MPN的一边恰好经过BC边的中点时,试求线段EF的长.
3、如图,在6×6的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,A,B两点均在格点上.请按要求在图①,图②,图③中画图:
(1)在图①中,画等腰△ABC,使AB为腰,点C在格点上.
(2)在图②中,画面积为8的四边形ABCD,使其为中心对称图形,但不是轴对称图形,C,D两点均在格点上.
(3)在图③中,画△ABC,使∠ACB=90°,面积为5,点C在格点上.
4、阅读下列材料,完成相应任务:如图①,是⊙O的内接三角形,是⊙O的直径,平分交⊙O于点,连接,过点作⊙O的切线,交的延长线于点.则.下面是证明的部分过程:
证明:如图②,连接,
是⊙O的直径,,
①________.(1)
为⊙O的切线,,
,(2)
由(1)(2)得,②________________.
平分.
,
③________,
.
任务:
(1)请按照上面的证明思路,补全证明过程:①________,②________,③________;
(2)若,求的长.
5、如图,内接于,BC是的直径,D是AC延长线上一点.
(1)请用尺规完成基本作图:作出的角平分线交于点P.(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,过点P作,垂足为E.则PE与有怎样的位置关系?请说明理由.
-参考答案-
一、单选题
1、A
【分析】
设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.
【详解】
设原来扇形的半径为r,圆心角为n,
∴原来扇形的面积为,
∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的,
∴变化后的扇形的半径为3r,圆心角为,
∴变化后的扇形的面积为,
∴扇形的面积不变.
故选:A.
【点睛】
本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.
2、C
【分析】
利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.
【详解】
解:A、不是中心对称图形,故A错误.
B、不是中心对称图形,故B错误.
C、是中心对称图形,故C正确.
D、不是中心对称图形,故D错误.
故选:C.
【点睛】
本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.
3、B
【分析】
根据旋转可得,,得.
【详解】
解:,,
,
将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
,,
.
故选:B.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
4、C
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A.是轴对称图形,不是中心对称图形,故此选项不合题意;
B.不是轴对称图形,是中心对称图形,故此选项不符合题意;
C.是轴对称图形,也是中心对称图形,故此选项合题意;
D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
5、B
【分析】
根据中心对称图形与轴对称图形的概念逐项分析
【详解】
解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;
B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;
C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;
D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;
故选B
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.
6、B
【分析】
连接OC.根据确定,,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出.
【详解】
解:如下图所示,连接OC.
∵,
∴,.
∴.
∵.
∴.
∴
∵和分别是所对的圆周角和圆心角,
∴.
故选:B.
【点睛】
本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.
7、C
【分析】
直接根据题意及弧长公式可直接进行求解.
【详解】
解:由题意得:的圆心角所对弧的弧长是;
故选C.
【点睛】
本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.
8、B
【分析】
根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.
【详解】
解;如图,分别连接AB、AC、BC,取任意两条线段的中垂线相交,交点就是圆心.
故选:B.
【点睛】
本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.
9、C
【分析】
先设半径为r,再根据弧长公式建立方程,解出r即可
【详解】
设半径为r,
则周长为2πr,
120°所对应的弧长为
解得r=3
故选C
【点睛】
本题考查弧长计算,牢记弧长公式是本题关键.
10、B
【分析】
先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠AC′C=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.
【详解】
解:∵CC′∥AB,
∴∠ACC′=∠CAB=64°
∵△ABC在平面内绕点A旋转到△AB′C′的位置,
∴∠CAC′等于旋转角,AC=AC′,
∴∠ACC′=∠AC′C=64°,
∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,
∴旋转角为52°.
故选:B.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
二、填空题
1、6
【分析】
如图,连接OA、OB、OC、OD、OE、OF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.
【详解】
解:如图,连接OA、OB、OC、OD、OE、OF.
∵正六边形ABCDEF,
∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,
∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,
∵的周长为,
∴的半径为,
正六边形的边长是6;
【点睛】
本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.
2、10 5
【分析】
(1)如图,作AH⊥BC于H.根据垂线段最短,求出AH即可解决问题.
(2)如图,在AB上取一点K,使得AK=AC,连接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC时,KD的值最小,求出KD的最小值即可解决问题.
【详解】
解:如图作AH⊥BC于H,
∵AB=AC=20,,
∴ ,
∵ ,
∴ ,
根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为10.
∴AP的最小值是10;
(2)如图,在AB上取一点K,使得AK=AC,连接CK,DK.
∵∠ACB=90°,∠B=30°,
∴∠CAK=60°,
∴∠PAD=∠CAK,
∴∠PAC=∠DAK,
∵PA=DA,CA=KA,
∴△PAC≌△DAK(SAS),
∴PC=DK,
∵KD⊥BC时,KD的值最小,
∵ ,
是等边三角形,
∴ ,
∴PC的最小值为5.
【点睛】
本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题.
3、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2),;(3)
【分析】
(1)根据切线的定义判断即可.
(2)由=AC+,计算即可;根据计算即可.
(3)根据勾股定理,得即为正方形的面积,比较与圆的面积的大小关机即可.
【详解】
解:(1)∵⊙O的直径,作射线,过点作的垂线,
∴经过半径外端且垂直于这条半径的直线是圆的切线;
故答案为:经过半径外端且垂直于这条半径的直线是圆的切线;
(2)根据题意,得AC=r,==πr,
∴=AC+=r+πr,
∴=;
∵,
∴MA=-r=,
故答案为:,;
(3)如图,连接ME,
根据勾股定理,得
=
=;
故答案为:.
【点睛】
本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键.
4、
【分析】
根据弓形的面积=扇形的面积-三角形的面积求解即可.
【详解】
解:如图,AC⊥OB,
∵圆心角为60°,OA=OB,
∴△OAB是等边三角形,
∴OC=OB=1,
∴AC=,
∴S△OAB=OB×AC=×2×=,
∵S扇形OAB==,
∴弓形(阴影部分)的面积= S扇形OAB- S△OAB=,
故答案为:.
【点睛】
本题考查扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法以及直角三角形的边角关系是正确解答的关键.
5、九9
【分析】
根据正多边形的每个中心角相等,且所有中心角的度数和为360°进行求解即可.
【详解】
解:设这个正多边形的边数为n,
∵这个正多边形的中心角是40°,
∴,
∴,
∴这个正多边形是九边形,
故答案为:九.
【点睛】
本题主要考查了正多边形的性质,熟知正多边形中心角的度数和为360度是解题的关键.
三、解答题
1、(1)见解析;(2)∠DAE=∠BAC,见解析;(3)DE=BD,见解析
【分析】
(1)根据旋转的性质可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=60°,从而得到∠DAE=∠D′AE,再利用“边角边”证明△ADE和△AD′E全等,根据全等三角形对应边相等证明即可;
(2)根据旋转的性质可得AD=AD′,再利用“边边边”证明△ADE和△AD′E全等,然后根据全等三角形对应角相等求出∠DAE=∠D′AE,然后求出∠BAD+∠CAE=∠DAE,从而得解;
(3)求出∠D′CE=90°,然后根据等腰直角三角形斜边等于直角边的倍可得D′E=CD′,再根据旋转的性质解答即可.
【详解】
(1)证明:∵△ABD绕点A旋转得到△ACD′,
∴AD=AD′,∠CAD′=∠BAD,
∵∠BAC=120°,∠DAE=60°,
∴∠D′AE=∠CAD′+∠CAE
=∠BAD+∠CAE
=∠BAC−∠DAE
=120°−60°
=60°,
∴∠DAE=∠D′AE,
在△ADE和△AD′E中,
,
∴△ADE≌△AD′E(SAS),
∴DE=D′E;
(2)解:∠DAE= ∠BAC.
理由如下:在△ADE和△AD′E中,
,
∴△ADE≌△AD′E(SSS),
∴∠DAE=∠D′AE,
∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,
∴∠DAE=∠BAC;
(3)解:∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=∠ACD′=45°,
∴∠D′CE=45°+45°=90°,
∵△D′EC是等腰直角三角形,
∴D′E=CD′,
由(2)DE=D′E,
∵△ABD绕点A旋转得到△ACD′,
∴BD=C′D,
∴DE=BD.
【点睛】
本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.
2、(1)EF=DF+BE;(2)EF=DF-BE;(3)线段EF的长为或.
【分析】
(1)延长FD至G,使DG=BE,连接AG,先证△ABE≌△ADG,再证△GAF≌△EAF即可;
(2)在DC上截取DH=BE,连接AH,先证△ADH≌△ABE,再证△HAF≌EAF即可;
(3)分两种情形分别求解即可解决问题.
【详解】
解:(1)结论:EF=BE+DF.
理由:延长FD至G,使DG=BE,连接AG,如图①,
∵ABCD是正方形,
∴AB=AD,∠ABE=ADG=∠DAB=90°,
∴△ABE≌△ADG(AAS),
∴AE=AG,∠DAG=∠EAB,
∵∠EAF=45°,
∴∠DAF+∠EAB=45°,
∴∠DAF+∠DAG=45°,
∴∠GAF=∠EAF=45°,
∵AF=AF,
∴△GAF≌△EAF(AAS),
∴EF=GF,
∴GF=DF+DG=DF+BE,
即:EF=DF+BE;
(2)结论:EF=DF-BE.
理由:在DC上截取DH=BE,连接AH,如图②,
∵AD=AB,∠ADH=∠ABE=90°,
∴△ADH≌△ABE(SAS),
∴AH=AE,∠DAH=∠EAB,
∵∠EAF=∠EAB+∠BAF=45°,
∴∠DAH+∠BAF=45°,
∴∠HAF=45°=∠EAF,
∵AF=AF,
∴△HAF≌EAF(SAS),
∴HF=EF,
∵DF=DH+HF,
∴EF=DF-BE;
(3)①当MA经过BC的中点E时,同(1)作辅助线,如图:
设FD=x,由(1)的结论得FG=EF=2+x,FC=4-x.
在Rt△EFC中,(x+2)2=(4-x)2+22,
∴x=,
∴EF=x+2=.
②当NA经过BC的中点G时,同(2)作辅助线,
设BE=x,由(2)的结论得EC=4+x,EF=FH,
∵K为BC边的中点,
∴CK=BC=2,
同理可证△ABK≌FCK(SAS),
∴CF=AB=4,EF=FH=CF+CD-DH=8-x,
在Rt△EFC中,由勾股定理得到:(4+x)2+42=(8-x)2,
∴x=,
∴EF=8-=.
综上,线段EF的长为或.
【点睛】
本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.
3、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)因为AB=5,作腰为5的等腰三角形即可(答案不唯一);
(2)作边长为2,高为4的平行四边形即可;
(3)根据(1)的结论,作BG边的中线,即可得解.
【详解】
解:(1)如图①中,△ABC即为所求作(答案不唯一);
(2)如图②中,平行四边形ABCD即为所求作;
(3)如图③中,△ABC即为所求作(答案不唯一);
∵AB=AG,BC=CG,
∴AC⊥BG,
∵△ABG的面积为,
∴△ABC的面积为5,且∠ACB=90°.
【点睛】
本题考查作图-应用与设计,等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
4、(1),,;(2)
【分析】
(1)由是⊙O的直径,得到∠ODB.再由为⊙O的切线,得到,即可推出∠ODA=∠BDE,由角平分线的定义可得,由,得到,即可证明;
(2)在直角△ODE中利用勾股定理求解即可.
【详解】
解:(1)如图②,连接,
是⊙O的直径,
,
∠ODB.(1)
为⊙O的切线,
,
,(2)
由(1)(2)得,∠ODA=∠BDE.
平分,
∴.
,
∠ODA,
.
故答案为:① ,② ,③ ;
(2)为的切线,
.
,
,
,
.
在中,
.
【点睛】
本题主要考查了切线的性质,角平分线的定义,等腰三角形的性质,直径所对的圆周角是直角,勾股定理等等,解题的关键在于能够熟练掌握切线的性质.
5、
(1)作图见解析
(2)是的切线,理由见解析
【分析】
(1)如图1所示,以点为圆心,大于为半径画弧,交于点,交于点;分别以点为圆心,大于的长度为半径画弧,交点为,连接即为角平分线,与的交点即为点.
(2)如图2所示,连接,由题意可知,,,,;在四边形中,,,求出,得出,由于是半径,故有是的切线.
(1)
解:如图1所示
(2)
解:是的切线.
如图2所示,连接
由题意可知,,
,,
在四边形中
∵
∴
∴
又∵是半径
∴是的切线
【点睛】
本题考查了角平分线的画法与性质,切线的判定,圆周角等知识点.解题的关键在于将知识综合灵活运用.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试精练,共30页。试卷主要包含了如图,点A,下列判断正确的个数有等内容,欢迎下载使用。
这是一份初中第24章 圆综合与测试测试题,共37页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课堂检测,共30页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。