搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年沪科版九年级数学下册第24章圆课时练习试卷(含答案详解)

    2021-2022学年沪科版九年级数学下册第24章圆课时练习试卷(含答案详解)第1页
    2021-2022学年沪科版九年级数学下册第24章圆课时练习试卷(含答案详解)第2页
    2021-2022学年沪科版九年级数学下册第24章圆课时练习试卷(含答案详解)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第24章 圆综合与测试同步练习题

    展开

    这是一份初中数学第24章 圆综合与测试同步练习题,共26页。
    沪科版九年级数学下册第24章圆课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下面的图形中既是轴对称图形又是中心对称图形的是(    A. B. C. D.2、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是(     A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<23、如图,点ABC上,,则的度数是(    A.100° B.50° C.40° D.25°4、下列图形中,既是中心对称图形又是抽对称图形的是(    A. B. C. D.5、如图,PAPB是⊙O的切线,AB为切点,PA=4,则PB的长度为(    A.3 B.4 C.5 D.66、如图,在Rt△ABC中,,以边上一点为圆心作,恰与边分别相切于点,则阴影部分的面积为(    A. B. C. D.7、如图,CD的高,按以下步骤作图:(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于GH两点.(2)作直线GHAB于点E.(3)在直线GH上截取(4)以点F为圆心,AF长为半径画圆交CD于点P则下列说法错误的是(         A. B. C. D.8、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为(    A.30° B.60°C.90° D.120°9、如图,PAPB是⊙O的切线,AB是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为(   A.70° B.50° C.20° D.40°10、如图,的两边分别相切,其中OA边与相切于点P.若,则OC的长为(    A.8 B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在△ABC中,AB = AC,以AB为直径的圆OBC边于点D.要使得圆OAC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是 _________ .(写出所有正确答案的序号)①∠BAC > 60°;②45° < ∠ABC < 60°;③BD > AB;④AB < DE < AB2、一个五边形共有__________条对角线.3、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作RtOA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到 RtOA2A3RtOA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.4、如图,在⊙O中,ABC是⊙O上三点,如果∠AOB=70º,那么∠C的度数为_______.5、圆锥的母线长为,底面圆半径为r,则全面积为______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知等边内接于⊙OD的中点,连接DB,DC,过点CAB的平行线,交BD的延长线于点E.(1)求证:CE是⊙O的切线;(2)若AB的长为6,求CE的长.2、如图,在直角坐标系中,将△ABC绕点A顺时针旋转90°.(1)画出旋转后的△AB1C1,并写出B1C1的坐标;(2)求线段AB在旋转过程中扫过的面积.3、如图,APBC是⊙O上的四点,∠APC=∠CPB=60°.(1)判断△ABC的形状,并证明你的结论;(2)求证:PAPBPC.4、新定义:如图①,已知,在内部画射线OC,得到三个角,分别为.若这三个角中有一个角是另外一个角的2倍,则称射线OC的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)(阅读理解)(1)角的平分线______这个角的“幸运线”;(填“是”或“不是”)(初步应用)(2)如图①,,射线OC的“幸运线”,则的度数为______;(直接写出答案)(解决问题)(3)如图②,已知,射线OMOA出发,以每秒10°的速度绕O点顺时针旋转,同时,射线ONOB出发,以每秒15°的速度绕O点顺时针旋转,设运动的时间为t.若OMONOB三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求运动的时间t的值.(实际运用)(4)周末,小丽帮妈妈到附近的“中通快递”网点取包裹,出家门时小丽看了看时钟,恰好是下午3点整,取好包裹回到家时,小丽再看了看时钟,还没有到下午3点半,但此时分针与时针恰好重合.问小丽帮妈妈取包裹用了多少分钟?5、如图,AB为⊙O的切线,B为切点,过点BBCOA,垂足为点E,交⊙O于点C,连接CO并延长COAB的延长线交于点D,连接AC(1)求证:AC为⊙O的切线;(2)若⊙O半径为2,OD=4.求线段AD的长. -参考答案-一、单选题1、A【详解】解:A、既是轴对称图形又是中心对称图形,此项符合题意;B、是中心对称图形,不是轴对称图形,此项不符题意;C、是轴对称图形,不是中心对称图形,此项不符题意;D、是轴对称图形,不是中心对称图形,此项不符题意;故选:A.【点睛】本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.2、A【分析】点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.【详解】解:∵⊙O的半径为4,点P 在⊙O外部,OP需要满足的条件是OP>4,故选:A【点睛】此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.3、C【分析】先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.【详解】∵∠ACB=50°,∴∠AOB=100°,OA=OB∴∠OAB=∠OBA= 40°,故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4、B【详解】解:.是轴对称图形,不是中心对称图形,故此选项不符合题意;.既是轴对称图形,也是中心对称图形,故此选项符合题意;.是轴对称图形,不是中心对称图形,故此选项不符合题意;.不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、B【分析】由切线的性质可推出.再根据直角三角形全等的判定条件“HL”,即可证明,即得出【详解】PAPB是⊙O的切线,AB为切点,∴在中,故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.6、A【分析】连结OC,根据切线长性质DC=ACOC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可.【详解】解:连结OC∵以边上一点为圆心作,恰与边分别相切于点A, DC=ACOC平分∠ACD∴∠ACD=90°-∠B=60°,∴∠OCD=∠OCA==30°,在Rt△ABC中,AC=ABtanB=3×在Rt△AOC中,∠ACO=30°,AO=ACtan30°=OD=OA=1,DC=AC=∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,S阴影=故选择A.【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.7、C【分析】连接AFBF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.【详解】解:连接AFBF,由作法可知,FE垂直平分AB,故A正确;CD的高,,故B正确;,故C错误;∴∠AFE=45°,同理可得∠BFE=45°,∴∠AFB=90°,,故D正确;故选:C.【点睛】本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.8、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.9、D【分析】首先连接OAOB,由PAPB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.【详解】解:连接OAOBPAPB为⊙O的切线,∴∠OAP=∠OBP=90°,∵∠ACB=70°,∴∠AOB=2∠P=140°,∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.故选:D【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.10、C【分析】如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.【详解】解:如图所示,连接CPOAOB都是圆C的切线,∠AOB=90°,P为切点,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,CP=OP=4,故选C.【点睛】本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.二、填空题1、②④【分析】将所给四个条件逐一判断即可得出结论.【详解】解:在中, ①当∠BAC > 60°时,若时,点E与点A重合,不符合题意,故①不满足;②当∠ABC时,点E与点A重合,不符合题意,当∠ABC时,点E与点O不关于AD对称,当时,点E关于直线AD的对称点在线段OA上,所以,当45° < ∠ABC < 60°时,点E关于直线AD的对称点在线段OA上,故②满足条件;③当时,点E关于直线AD的对称点在线段OA上,故③不满足条件;④当AB < DE < AB时,点E关于直线AD的对称点在线段OA上,故④满足条件;所以,要使得AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是45° < ∠ABC < 60°或AB < DE < AB故答案为②④【点睛】本题考查了圆周角定理,正确判断出每种情况是解答本题的关键.2、5【分析】n边形的对角线有: 条,再把代入计算即可得.【详解】解:边形共有条对角线,五边形共有条对角线.故答案为:5【点睛】本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键.3、22020【分析】根据,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标.【详解】解:∵∠OA0A1=90°,∠A1OA0=60°,点A0的坐标是(1,0),OA0=1,∴点A1 的横坐标是 1=20OA1=2OA0=2,∵∠A2A1O=90°,∠A2OA1=60°,OA2=2OA1=4,∴点A2 的横坐标是- OA2=-2=-21 依次进行下去,Rt△OA2A3,Rt△OA3A4…,同理可得:A3 的横坐标是﹣2OA2=﹣8=﹣23A4 的横坐标是﹣8=﹣23A5 的横坐标是 OA5×2OA4=2OA3=4OA2=16=24A6 的横坐标是2OA5=2×2OA4=23OA3=64=26A7 的横坐标是64=26发现规律,6次一循环,2021÷6=336……5则点A2021的横坐标与的坐标规律一致是 22020故答案为:22020【点睛】本题考查了规律型——点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n轴上,且坐标为4、35°【分析】利用圆周角定理求出所求角度数即可.【详解】解:都对,且故答案为:【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.5、【分析】根据圆锥的展开图为扇形,结合弧长公式、圆周长的求解公式、面积的求解公式,圆锥侧面积的求解公式可得出答案.【详解】解:圆锥的侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆周长,故可得,这个扇形的半径为,扇形的弧长为圆锥的侧面积为圆锥的全面积为圆锥的底面积侧面积:故答案为:【点睛】本题考查了圆锥的计算,解题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.三、解答题1、(1)见解析;(2)3【分析】(1)由题意连接OCOB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;(2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=BC=3.【详解】解:(1)证明:如图连接OC、OB是等边三角形    又 ∵与⊙O相切; (2)∵四边形ABCD是⊙O的内接四边形,D的中点,     【点睛】本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.2、(1)作图见解析,;(2)【分析】(1)将绕点A顺时针旋转90°得,根据点A、B、C坐标,即可确定出点的坐标;(2)根据勾股定理求出AB的长,由扇形面积公式即可得出答案.【详解】(1)将绕点A顺时针旋转90°得如图所示:(2)由图可知:∴线段AB在旋转过程中扫过的面积为【点睛】本题考查作旋转图形以及扇形的面积公式,掌握旋转的性质及扇形的面积公式是解题的关键.3、(1)△ABC是等边三角形,证明见解析;(2)见解析【分析】(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;(2)如图所示,在PC取一点E使得AE=AP,先证明△APE是等边三角形,得到AP=PE,∠AEP=60°,可以推出∠AEC=∠APB,然后证明△APB≌△AEC得到BP=CE,即可证明PC=PE+CE=AP+BP【详解】解:(1)△ABC是等边三角形.证明如下:由圆周角定理:∠BAC=∠CPB,∠ABC=∠APC∵∠APC=∠CPB=60°,∴∠BAC=∠ABC=60°,∴∠ACB=180°-∠BAC-∠ABC=180°-60°-60°=60°.∴△ABC是等边三角形.(2)如图所示,在PC取一点E使得AE=AP∵∠APE=60°,AP=AE∴△APE是等边三角形,AP=PE,∠AEP=60°,∴∠AEC=120°,又∵∠APC=∠CPB=60°,∴∠APB=120°,∴∠AEC=∠APB∵△ABC是等边三角形,AB=AC又∵∠ABP=∠ACE∴△APB≌△AECAAS),BP=CEPC=PE+CE=AP+BP【点睛】本题考查了圆周角定理、等边三角形的性质与判定,全等三角形的性质与判定,解题的关键是掌握圆周角定理,正确求出∠ABC=∠BAC=60°.4、(1)是;(2)16°或24°或32°;(3)2或;(4)【分析】(1)根据幸运线定义即可求解;(2)分3种情况,根据幸运线定义得到方程求解即可;(3)根据幸运线定义得到方程求解即可;(4)利用时针1分钟走,分针1分钟走,可解答问题.【详解】解:(1)一个角的平分线是这个角的“幸运线”;故答案为:是;(2)①设∠AOC=x,则∠BOC=2x由题意得,x+2x=48°,解得x=16°,②设∠AOC=x,则∠BOC=x由题意得,x+x=48°,解得x=24°,③设∠AOC=x,则∠BOC=x由题意得,x+x=48°,解得x=32°,故答案为:16°或24°或32°;(3)OB是射线OMON的幸运线,则∠BOM=MON,即50-10t=(50-10t+15t),解得t=2;BOM=MON,即50-10t=(50-10t+15t),解得t=BOM=MON,即50-10t=(50-10t+15t),解得t=故t的值是2或(4)时针1分钟走,分针1分钟走设小丽帮妈妈取包裹用了x分钟,则有0.5x+3×30=6x,解得:x=【点睛】本题考查了旋转的性质,幸运线定义,学生的阅读理解能力及知识的迁移能力.理解“幸运线”的定义是解题的关键.5、(1)见解析;(2)4【分析】(1)连接OB,证明△AOB≌△AOCSSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;(2)在Rt△BOD中,勾股定理求得BD,根据sinD,代入数值即可求得答案【详解】解:(1)连接OBAB是⊙O的切线,OBAB即∠ABO=90°,BC是弦,OABCCEBEACAB在△AOB和△AOC中,∴△AOB≌△AOCSSS),∴∠ACO=∠ABO=90°,ACOCAC是⊙O的切线;(2)在Rt△BOD中,由勾股定理得,BD=2∵sinD,⊙O半径为2,OD=4.解得AC=2ADBD+AB=4【点睛】本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键. 

    相关试卷

    数学九年级下册第24章 圆综合与测试综合训练题:

    这是一份数学九年级下册第24章 圆综合与测试综合训练题,共28页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。

    数学九年级下册第24章 圆综合与测试当堂检测题:

    这是一份数学九年级下册第24章 圆综合与测试当堂检测题,共39页。

    初中数学沪科版九年级下册第24章 圆综合与测试课堂检测:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课堂检测,共35页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map