开学活动
搜索
    上传资料 赚现金

    2021-2022学年沪科版九年级数学下册第24章圆章节训练试题

    2021-2022学年沪科版九年级数学下册第24章圆章节训练试题第1页
    2021-2022学年沪科版九年级数学下册第24章圆章节训练试题第2页
    2021-2022学年沪科版九年级数学下册第24章圆章节训练试题第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试达标测试

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试达标测试,共26页。试卷主要包含了如图,点A等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是(     A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<22、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为(    A.25° B.80° C.130° D.100°3、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为(    A.3 B. C. D.4、如图,是△ABC的外接圆,已知,则的大小为(      A.55° B.60° C.65° D.75°5、如图,在中,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是(    A. B. C. D.6、如图,点ABC上,,则的度数是(    A.100° B.50° C.40° D.25°7、下列各点中,关于原点对称的两个点是(  )A.(﹣5,0)与(0,5) B.(0,2)与(2,0)C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)8、下列图形中,既是轴对称图形又是中心对称图形的是(       A. B. C. D.9、如图,在中,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于(    A. B. C. D.10、若的圆心角所对的弧长是,则此弧所在圆的半径为(    A.1 B.2 C.3 D.4第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OBOC,若弦BC的长度为,则∠BAC=________度.2、如图,⊙O的半径为5cm,正六边形ABCDEF内接于⊙O,则图中阴影部分的面积为 ___.3、如果点与点B关于原点对称,那么点B的坐标是______.4、如图,在中,绕点B顺时针方向旋转45°得到,点A经过的路径为弧,点C经过的路径为弧,则图中阴影部分的面积为______.(结果保留5、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.三、解答题(5小题,每小题10分,共计50分)1、如图,已知的直径,于点C,交的延长线于点D,且(1)求的大小;(2)若,求的长.2、如图,在直角坐标系中,将△ABC绕点A顺时针旋转90°.(1)画出旋转后的△AB1C1,并写出B1C1的坐标;(2)求线段AB在旋转过程中扫过的面积.3、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).(1)把△ABC向右平移3个单位得△A1B1C1,请画出△A1B1C1并写出点A1的坐标;(2)把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C24、如图,AB是⊙O的直径,点DE在⊙O上,四边形BDEO是平行四边形,过点DAE的延长线于点C(1)求证:CD是⊙O的切线.(2)若,求阴影部分的面积.5、如图,△ABC内接于⊙OD是⊙O的直径AB的延长线上一点,∠DCB=∠OAC.过圆心OBC的平行线交DC的延长线于点E(1)求证:CD是⊙O的切线;(2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值. -参考答案-一、单选题1、A【分析】点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.【详解】解:∵⊙O的半径为4,点P 在⊙O外部,OP需要满足的条件是OP>4,故选:A【点睛】此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.2、D【分析】根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.【详解】解:∵四边形ABCD内接于⊙O∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圆周角定理得,∠AOC=2∠B=100°,故选:D.【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.3、A【分析】分析:连接OA、OB,根据圆周角定理,易知∠AOB=60°;因此△ABO是等边三角形,即可求出⊙O的半径.【详解】解:连接BO,并延长交⊙OD,连结DC∵∠A=30°,∴∠D=∠A=30°,BD为直径,∴∠BCD=90°,在Rt△BCD中,BC=3,∠D=30°,BD=2BC=6,OB=3.故选A.【点睛】本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键.4、C【分析】OA=OB,求出∠AOB=130°,根据圆周角定理求出的度数.【详解】解:∵OA=OB∴∠BAO=∴∠AOB=130°.=AOB=65°.故选:C【点睛】此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.5、C【分析】过点AACx轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.【详解】解:如图,过点AACx轴于点C ,则解得:∴点∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.6、C【分析】先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.【详解】∵∠ACB=50°,∴∠AOB=100°,OA=OB∴∠OAB=∠OBA= 40°,故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7、D【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;故选:D【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.8、D【详解】解:.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;.不是轴对称图形,是中心对称图形,故本选项不符合题意;.是轴对称图形,不是中心对称图形,故本选项不符合题意;.既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.【详解】解:连接CD,如图所示:∵点DAB的中点,在Rt△ACB中,由勾股定理可得故选D.【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.10、C【分析】先设半径为r,再根据弧长公式建立方程,解出r即可【详解】设半径为r则周长为2πr120°所对应的弧长为解得r=3故选C【点睛】本题考查弧长计算,牢记弧长公式是本题关键.二、填空题1、60【分析】RtBOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圆周角定理即可解决问题.【详解】解:如图作OEBCEOEBCBE=EC=,∠BOE=∠COEOE=1,OB=2OE∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案为:60.【点睛】本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.2、【分析】根据图形分析可得求阴影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可.【详解】如图,连接BOOCOA由题意得:△BOC,△AOB都是等边三角形,∴∠AOB=∠OBC=60°,∴OA∥BC,故答案为:【点睛】本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是得出3、【分析】关于原点对称的点坐标特征为:横坐标、纵坐标都互为相反数;进而求出点B坐标.【详解】解:由题意知点B横坐标为;纵坐标为故答案为:【点睛】本题考查了关于原点对称的点的坐标知识.解题的关键在于熟练记忆关于原点对称的点坐标中相对应的坐标互为相反数.4、##【分析】AC相交于点D,过点D,垂足为点E,根据勾股定理逆定理可得为直角三角形,根据三边关系可得,根据题意及等角对等边得出,在中,利用正弦函数可得,结合图形,利用扇形面积公式及三角形面积公式求解即可得.【详解】解:设AC相交于点D,过点D,垂足为点E为直角三角形,绕点B顺时针方向旋转45°得到中,故答案为:【点睛】题目主要考查勾股定理逆定理,旋转的性质,等角对等边的性质,正切函数,扇形面积等,理解题意,结合图形,综合运用这些知识点是解题关键.5、60【分析】正六边形连接各个顶点和中心,这些连线会将360°分成6分,每份60°因此至少旋转60°,正六边形就能与自身重合.【详解】360°÷6=60°故答案为:60【点睛】本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键.三、解答题1、(1)45°(2)【分析】(1)连接OC,根据切线的性质得到OCCD,根据圆周角定理得到∠DOC=2∠CAD,进而证明∠D=∠DOC,根据等腰直角三角形的性质求出∠D的度数;(2)根据等腰三角形的性质求出OC,根据弧长公式计算即可.(1)连接,即 是⊙的切线,,即 (2)的长【点睛】本题考查的是切线的性质、圆周角定理、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.2、(1)作图见解析,;(2)【分析】(1)将绕点A顺时针旋转90°得,根据点A、B、C坐标,即可确定出点的坐标;(2)根据勾股定理求出AB的长,由扇形面积公式即可得出答案.【详解】(1)将绕点A顺时针旋转90°得如图所示:(2)由图可知:∴线段AB在旋转过程中扫过的面积为【点睛】本题考查作旋转图形以及扇形的面积公式,掌握旋转的性质及扇形的面积公式是解题的关键.3、(1)图见解析;A1(3,3);(2)见解析【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.【详解】解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(3,3);(2)如图所示:△A2B2C2,即为所求.【点睛】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.4、(1)见详解;(2)【分析】(1)连接OD,由题意易得,则有△ODB是等边三角形,然后可得△AEO也为等边三角形,进而可得ODAC,最后问题可求证;(2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圆O的半径,进而可得扇形OED和△OED的面积,则有弓形ED的面积,最后问题可求解.【详解】(1)证明:连接OD,如图所示:∵四边形BDEO是平行四边形,∴△ODB是等边三角形,∴∠OBD=∠BOD=60°,∴∠AOE=∠OBD=60°,OE=OA∴△AEO也为等边三角形,∴∠EAO=∠DOB=60°,AEOD∴∠ODC+∠C=180°,CDAE∴∠C=90°,∴∠ODC=90°,OD是圆O的半径,CD是⊙O的切线.(2)解:由(1)得∠EAO=∠AOE=∠OBD=∠BOD=60°,EDAB∴∠EAO=∠CED=60°,∵∠AOE+∠EOD+∠BOD=180°,∴∠EOD=60°,∴△DEO为等边三角形,  ED=OE=AECDAE,∠CED=60°,∴∠CDE=30°,设△OED的高为h【点睛】本题主要考查扇形面积公式、切线的判定定理及解直角三角形,熟练掌握扇形面积公式、切线的判定定理及解直角三角形是解题的关键.5、(1)见解析(2)3,2【分析】(1)由等腰三角形的性质与已知条件得出,∠OCA=∠DCB,由圆周角定理可得∠ACB=90°,进而得到∠OCD=90°,即可得出结论;(2)根据平行线分线段成比例定理得到,设BD=2x,则OB=OC=3xOD=OB+BD=5x,在RtOCD中,根据勾股定理求出x=1,即⊙O的半径为3,由平行线的性质得到∠OCB=∠EOC,在RtOCE中,可求得tan∠EOC=2,即tan∠OCB=2.(1)证明:∵OAOC∴∠OAC=∠OCA∵∠DCB=∠OAC∴∠OCA=∠DCB      AB是⊙O的直径,∴∠ACB=90°,∴∠OCA+∠OCB=90°,∴∠DCB+∠OCB=90°,即∠OCD=90°,OCDC      OC是⊙O的半径,CD是⊙O的切线;(2)OEBCCD=4,CE=6,BD=2x,则OB=OC=3xOD=OB+BD=5xOCDC∴△OCD是直角三角形,RtOCD中,OC2+CD2=OD2∴(3x2+42=(5x2解得,x=1,OC=3x=3,即⊙O的半径为3,BCOE∴∠OCB=∠EOCRtOCE中,tanEOC=∴tan∠OCB=tan∠EOC=2.【点睛】本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键. 

    相关试卷

    初中沪科版第24章 圆综合与测试课堂检测:

    这是一份初中沪科版第24章 圆综合与测试课堂检测,共28页。

    初中沪科版第24章 圆综合与测试课时作业:

    这是一份初中沪科版第24章 圆综合与测试课时作业,共29页。试卷主要包含了如图,一个宽为2厘米的刻度尺,如图,点A等内容,欢迎下载使用。

    初中第24章 圆综合与测试测试题:

    这是一份初中第24章 圆综合与测试测试题,共37页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map