年终活动
搜索
    上传资料 赚现金

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆课时练习试题(含详细解析)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆课时练习试题(含详细解析)第1页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆课时练习试题(含详细解析)第2页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆课时练习试题(含详细解析)第3页
    还剩31页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试巩固练习

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试巩固练习,共34页。
    沪科版九年级数学下册第24章圆课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个图案中,是中心对称图形的是(  )A. B.C. D.2、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为(    A.36 cm B.27 cm C.24 cm D.15 cm3、如图,ABBCCD分别与⊙O相切于EFG三点,且ABCDBO=3,CO=4,则OF的长为(  )A.5 B. C. D.4、在半径为6cm的圆中,的圆心角所对弧的弧长是(    A.cm B.cm C.cm D.cm5、下列图案中既是轴对称图形,又是中心对称图形的是(    A.  B.C. D.6、如图,在RtABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DEAC边于点F,则图中阴影部分的面积为(    A.3 B.1 C. D.7、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是(    A.50° B.60° C.40° D.30°8、下列图形中,可以看作是中心对称图形的是(    A. B.C. D.9、图2是由图1经过某一种图形的运动得到的,这种图形的运动是(    A.平移 B.翻折 C.旋转 D.以上三种都不对10、如图,PA的切线,切点为APO的延长线交于点B,若,则的度数为(    ).A.20° B.25° C.30° D.40°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、圆锥的母线长为,底面圆半径为r,则全面积为______.2、数学兴趣活动课上,小方将等腰的底边BC与直线l重合,问:(1)如图(1)已知,点PBC边所在的直线l上移动,小方发现AP的最小值是______;(2)如图(2)在直角中,,点DCB边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,线段CP的最小值是______.3、一块直角三角板的30°角的顶点A落在上,两边分别交BC两点,若弦BC长为4,则的半径为______.4、在平面直角坐标系中,A(-1,0),B(2,0),∠OCB=30°,D为线段BC的中点,线段AD交线段OC于点E,则△AOE面积的最大值为___________5、已知OI分别是△ABC的外心和内心,∠BIC=125°,则∠BOC的大小是 ___度.三、解答题(5小题,每小题10分,共计50分)1、如图1,在⊙O中,ACBD,且ACBD,垂足为点E(1)求∠ABD的度数;(2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;(3)在(2)的条件下,求的长.2、对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若PQ两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”.已知点N(3,0),A(1,0),(1)①在点ABC中,线段ON的“二分点”是______;②点Da,0),若点C为线段OD的“二分点”,求a的取值范围;(2)以点O为圆心,r为半径画圆,若线段AN上存在的“二分点”,直接写出r的取值范围.3、新定义:如图①,已知,在内部画射线OC,得到三个角,分别为.若这三个角中有一个角是另外一个角的2倍,则称射线OC的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)(阅读理解)(1)角的平分线______这个角的“幸运线”;(填“是”或“不是”)(初步应用)(2)如图①,,射线OC的“幸运线”,则的度数为______;(直接写出答案)(解决问题)(3)如图②,已知,射线OMOA出发,以每秒10°的速度绕O点顺时针旋转,同时,射线ONOB出发,以每秒15°的速度绕O点顺时针旋转,设运动的时间为t.若OMONOB三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求运动的时间t的值.(实际运用)(4)周末,小丽帮妈妈到附近的“中通快递”网点取包裹,出家门时小丽看了看时钟,恰好是下午3点整,取好包裹回到家时,小丽再看了看时钟,还没有到下午3点半,但此时分针与时针恰好重合.问小丽帮妈妈取包裹用了多少分钟?4、如图,在△ABC中,∠C=90°,点O为边BC上一点.以O为圆心,OC为半径的⊙O与边AB相切于点D(1)尺规作图:画出⊙O,并标出点D(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接CD,若CDBD,且AC=6.求劣弧的长.5、如图,以四边形的对角线为直径作圆,圆心为,点上,过点的延长线于点,已知平分(1)求证:切线;(2)若,求的半径和的长. -参考答案-一、单选题1、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.2、C【分析】连接,过点于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可.【详解】解:连接,过点于点,交于点,如图所示:的直径为中,即水的最大深度为故选:C.【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键.3、D【分析】连接OFOEOG,根据切线的性质及角平分线的判定可得OB平分OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.【详解】解:连接OFOEOGAB、BC、CD分别与相切,,且OB平分OC平分故选:D.【点睛】题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.4、C【分析】直接根据题意及弧长公式可直接进行求解.【详解】解:由题意得:的圆心角所对弧的弧长是故选C.【点睛】本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.5、B【分析】根据中心对称图形与轴对称图形的概念逐项分析【详解】解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.6、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.【详解】解:如图,设相交于点旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.7、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将△OAB绕点O逆时针旋转80°得到△OCD A的度数为110°,∠D的度数为40°, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.8、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.9、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C.【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.10、B【分析】连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【详解】解:连接OA,如图,PA是⊙O的切线,OAAP∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,OA=OB∴∠B=∠OAB∵∠AOP=∠B+∠OAB∴∠B=∠AOP=×50°=25°.故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.二、填空题1、【分析】根据圆锥的展开图为扇形,结合弧长公式、圆周长的求解公式、面积的求解公式,圆锥侧面积的求解公式可得出答案.【详解】解:圆锥的侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆周长,故可得,这个扇形的半径为,扇形的弧长为圆锥的侧面积为圆锥的全面积为圆锥的底面积侧面积:故答案为:【点睛】本题考查了圆锥的计算,解题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.2、10    5    【分析】(1)如图,作AHBCH.根据垂线段最短,求出AH即可解决问题.(2)如图,在AB上取一点K,使得AKAC,连接CKDK.由△PAC≌△DAKSAS),推出PCDK,易知KDBC时,KD的值最小,求出KD的最小值即可解决问题.【详解】解:如图作AHBCHABAC=20,根据垂线段最短可知,当APAH重合时,PA的值最小,最小值为10.AP的最小值是10;(2)如图,在AB上取一点K,使得AKAC,连接CKDK∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK∴∠PAC=∠DAKPADACAKA∴△PAC≌△DAKSAS),PCDKKDBC时,KD的值最小, 是等边三角形, PC的最小值为5.【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题.3、4【分析】连接OBOC,由题意易得∠BOC=60°,则有△BOC是等边三角形,然后问题可求解.【详解】连接OBOC,如图所示:∵∠A=30°,∴∠BOC=60°,OB=OC∴△BOC是等边三角形,,即⊙O的半径为4.故答案为:4.【点睛】本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.4、【分析】过点轴,交于点,根据中位线定理可得,设点轴的距离为G,则△AOE边上的高,作的外接圆,则当点位于图中处时,最大,根据三角形面积公式计算即可.【详解】解:过点轴,交于点A(-1,0),B(2,0),D为线段BC的中点,轴,设点轴的距离为则△AOE边上的高的外接圆,则当点位于图中处时,最大,因为为等边三角形,,,故答案为:.【点睛】本题考查了三角形中位线定理,圆周角定理,圆周角和圆心角的关系,等边三角形的判定与性质,解直角三角形等知识点,根据题意得出点的位置是解本题的关键.5、140【分析】的外接圆,根据三角形内心的性质可得:,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得.【详解】解:如图所示,作的外接圆,∵点I的内心,BICI分别平分∵点O的外心,故答案为:140.【点睛】题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键.三、解答题1、(1);(2);(3)【分析】(1)如图,过 垂足分别为 连接证明 四边形为正方形,可得 证明 可得答案;(2)先求解 再结合(1)的结论可得答案;(3)如图,连接 先求解 再证明 再求解 可得 再利用弧长公式计算即可.【详解】解:(1)如图,过 垂足分别为 连接 四边形为矩形,由勾股定理可得: 四边形为正方形, (2)如图,过 垂足分别为 由(1)得:四边形为正方形, OA=2,∠OAB=15°, (3)如图,连接 【点睛】本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形,正方形的判定与性质,垂径定理的应用,弧长的计算,掌握以上知识并灵活运用是解本题的关键.2、(1)①BC;②;(2)【分析】(1)①分别找出点ABC到线段ON的最小值和最大值,是否满足“二分点”定义即可;②对a的取值分情况讨论:,根据“二分点”的定义可求解;(2)设线段AN上存在的“二分点”为,对的取值分情况讨论,根据“二分点”的定义可求解.【详解】(1)①∵点AON上,故最小值为0,不符合题意,BON的最小值为,最大值为∴点B是线段ON的“二分点”,CON的最小值为1,最大值为∴点C是线段ON的“二分点”,故答案为:BC②若时,如图所示:COD的最小值为,最大值为∵点C为线段OD的“二分点”,解得:,如图所示:COD的最小值为1,最大值为,满足题意;时,如图所示:COD的最小值为1,最大值为∵点C为线段OD的“二分点”,解得:(舍);时,如图所示:COD的最小值为,最大值为∵点C为线段OD的“二分点”,解得:(舍),综上所得:a的取值范围为(2)如图所示,设线段AN上存在的“二分点”为时,最小值为:,最大值为:,即时,最小值为:,最大值为:∴∴,即不存在;时,最小值为:,最大值为:,即不存在;时,最小值为:,最大值为:,即综上所述,r的取值范围为【点睛】本题考查坐标上的两点距离,解一元二次方程解不等式以及点到圆的距离求最值,根据题目所给条件,掌握“二分点”的定义是解题的关键.3、(1)是;(2)16°或24°或32°;(3)2或;(4)【分析】(1)根据幸运线定义即可求解;(2)分3种情况,根据幸运线定义得到方程求解即可;(3)根据幸运线定义得到方程求解即可;(4)利用时针1分钟走,分针1分钟走,可解答问题.【详解】解:(1)一个角的平分线是这个角的“幸运线”;故答案为:是;(2)①设∠AOC=x,则∠BOC=2x由题意得,x+2x=48°,解得x=16°,②设∠AOC=x,则∠BOC=x由题意得,x+x=48°,解得x=24°,③设∠AOC=x,则∠BOC=x由题意得,x+x=48°,解得x=32°,故答案为:16°或24°或32°;(3)OB是射线OMON的幸运线,则∠BOM=MON,即50-10t=(50-10t+15t),解得t=2;BOM=MON,即50-10t=(50-10t+15t),解得t=BOM=MON,即50-10t=(50-10t+15t),解得t=故t的值是2或(4)时针1分钟走,分针1分钟走设小丽帮妈妈取包裹用了x分钟,则有0.5x+3×30=6x,解得:x=【点睛】本题考查了旋转的性质,幸运线定义,学生的阅读理解能力及知识的迁移能力.理解“幸运线”的定义是解题的关键.4、(1)作图见解析;(2)【分析】(1)由于D点为⊙O的切点,即可得到OC=OD,且ODAB,则可确定O点在∠A的角平分线上,所以应先画出∠A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;(2)连接CDOD,根据切线长定理,以及圆的基本性质,求出∠DCB的度数,然后进一步求出∠COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可.【详解】解:(1)如图所示,先作∠A的角平分线,交BCO点,以O为圆心,OC为半径画出⊙O即为所求;(2)如图所示,连接CDOD由题意,AD为⊙O的切线,OCAC,且OC为半径,AC为⊙O的切线,AC=AD∴∠ACD=∠ADCCD=BD∴∠B=∠DCB∵∠ADC=∠B+∠BCD∴∠ACD=∠ADC=2∠DCB∵∠ACB=90°,∴∠ACD+∠DCB=90°,即:3∠DCB=90°,∴∠DCB=30°,OC=OD∴∠DCB=∠ODC=30°,∴∠COD=180°-2×30°=120°,∵∠DCB=∠B=30°,∴在RtABC中,∠BAC=60°,AO平分∠BAC∴∠CAO=∠DAO=30°,∴在RtACO中,【点睛】本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键.5、(1)证明见解析(2)【分析】(1)连接OA,根据已知条件证明OAAE即可解决问题;(2)取CD中点F,连接OF,根据垂径定理可得OFCD,所以四边形AEFO是矩形,利用勾股定理即可求出结果.(1)证明:如图,连接OAAECD∴∠DAE+∠ADE=90°.DA平分∠BDE∴∠ADE=∠ADO又∵OA=OD∴∠OAD=∠ADO∴∠DAE+∠OAD=90°,OAAEAE是⊙O切线;(2)解:如图,取CD中点F,连接OFOFCD于点F∴四边形AEFO是矩形,CD=6,DF=FC=3.RtOFD中,OF=AE=4,RtAED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,AD的长是【点睛】本题考查了切线的判定与性质,垂径定理,圆周角定理,勾股定理,解决本题的关键是掌握切线的判定与性质. 

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题,共31页。试卷主要包含了如图,点A等内容,欢迎下载使用。

    初中数学第24章 圆综合与测试复习练习题:

    这是一份初中数学第24章 圆综合与测试复习练习题,共31页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试课时训练:

    这是一份沪科版九年级下册第24章 圆综合与测试课时训练,共30页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map